|
||||
|
||||
ביולי 2005 העבודה של דורון שדמי זכתה ל"הכרה" של האתר crack dot net . האתר מדרג את העבודה בדירוג CRANKIEST - דרגה שלישית מתוך ארבע, ודרוג מקביל לדרוג של האתר zerobyzero אליו התייחס אלון בכתבה המקורית. |
|
||||
|
||||
לדוברי שפת עבר ביננו: מה זה ILLUCID? (המורפיקס לא מכיר את המילה הזו)? |
|
||||
|
||||
יש להניח שהכוונה ל''לא בהיר''. |
|
||||
|
||||
Lucid (adj) ILLUCID - ההיפך.1. Easily understood; intelligible. 2. Mentally sound; sane or rational. 3. Translucent or transparent. See Synonyms at clear. נכון, המילה illucid היא לא במילון האנגלי. אבל אם כבר מורפיקס עושים ניתוח מורופולוגי למילים בעברית, הייתי מצפה שהם ירימו את הכפפה גם באנגלית. |
|
||||
|
||||
על-פי מילות המפתח שבהן מסווגת עבודתי, ניתן להבין בקלות את הזילות שנוקט בעל האתר בעבודות שהוא אוסף לרשימה שלו. האופן היחיד לבחינת ערכה של עבודה לפני שהיא מתפרסמת (לטובה או לרעה) במדיה כלשהי, הינה דיון רציני עם בעל העבודה. בעל האתר פסח (במקרה שלי) על שלב זה, והחליט על דעת עצמו להעניק לעבודתי את ה''כבוד'' להתפרסם באתר שלו. משול הדבר לגזירת דינו של אדם לחומרה מבלי שנתאפשר לו לומר את דבריו במסגרת של דיון פתוח, עקבי ורציני על הנושאים שבהם הוא חשוד. |
|
||||
|
||||
אני מבין את כעסך על בעל האתר crack.net. אבל זה נראה לי מאד לגיטימי להביע דעה על מאמר, ספר או סרט מבלי להתייעץ עם היוצר. זה נעשה כל הזמן. כשאתה מדבר על האפשרות להגיב, אתה מתכוון כנראה למדיה אובייקטיבית כגון עיתון, חדשות בטלויזיה או אנציקלופדיה1. האתר crack.net אינו אובייקטיבי והוא אינו מתיימר להיות אובייקטיבי. 1 וגם שם עשויים להיות חלקים של "דעות" שהם במוצהר לא אובייקטיבים. |
|
||||
|
||||
אח של אייל, האם אתה רואה איזו שהיא הבעת דיעה על עבודתי, המצביעה על התייחסות רצינית לתוכנה כבסיס להבעת הדיעה. האם מקובל בעיניך שתוגדר מעין "רשימה-שחורה" של נושאים כאשר תוכנן לא עבר שום ביקורת? כל שאליך לעשות הוא להכנס ל-http://www.crank.net/submit.html למלא את תוכן השדות, ולרוב אם התוכן אינו מובן בעיון שיטחי, ימצא האתר שסיפקת את מקומו ברשימה. אשמך לשמוע את דעתך על הקטע מעבודתי שפורסם באתר: "The idea behind the Galactic Examination is to simulate a situation that can help us to use a self reference constructive criticism, in order to find out if we can be considered as legitimate members of the union of the intelligent civilizations of our Galaxy. The minimal criterion is proof that the examined species can survive technological developments that could destroy it. One of the ways that has to be taken is connected to the language concept in general, and particularly, the language of Mathematics. Through an historical and current research the language of Mathematics is considered as one of the most powerful tools that can help us to implement ideas in a variety of areas, and particularly in scientific research and development."
|
|
||||
|
||||
אני מסכים שאין כאן התייחסות "רצינית" לתוכן. האתר לא מתיימר להסביר מהם כשלים באותם עבודות שהוא מצטט. זהו אתר בידורי (ראה disclaimer). אבל לדעתי זה לא מדוייק להגיד שהתוכן שלך לא עבר *שום* ביקורת. הרי כל שנה מתפרסמים מאות ואלפי מאמרים במתמטיקה, ורק חלקם הקטן זוכה להכנס לרשימה הזו. בשורה התחתונה, הרשימה השחורה הספציפית הזו *מקובלת עלי בהחלט*. לדעתי הקטע מעבודתך שפורסם באתר בהחלט הופך אותה לחשודה רצינית ב crank-יות. וזה בגלל שאתה מצהיר על כוונות שקשורות לקבלה לארגון חייזרי גלקטי ולשם כך נדרשת הוכחה (!) שהמין האנושי לא ישמיד את עצמו. בשתי הפסקאות הבאות (שאכן לא מופיעות בתקציר) אתה מצהיר שבעזרת שינוי בשפת המתמטיקה נוכל להגיע לאותה הוכחה שהיא חיונית לכל מין תבוני. אתה חייב להסכים שאלו טענות מאד יוצאות דופן ומהפכניות1. אלון עמית הזכיר שטענות מרחיקות לכת הוא מאפיין נפוץ של טרחנים מתמטיים. אני מניח שאנשים שמבינים במתמטיקה קראו את המאמר ולכן החליטו שהוא crankiest . אותם אנשים בחנו גם אתרים אחרים שעוסקים במתמטיקה ועבור חלקם הם הגיעו למסקנות שונות. למשל זה שטוען שקיים קשר בין מספרים ראשוניים לבין המיקום של מטאוריטים הוא סתם bizarre (כלומר לא בהכרח crank , אבל זה בהחלט משהו בלתי סביר). ---- 1 אני למשל, אישית מעולם לא שמעתי על ארגון חייזרי גלקטי - לא בחדשות, לא במהלך לימודי האקדמיים (תואר ראשון ושני), ולא בעניין הכללי שאני מגלה בחקר החלל. והוכחה שלא נשמיד את עצמנו? זה ממש ניבוי תהליכים היסטוריים. גם על זה מעולם לא שמעתי, למעט בסדרת "המוסד" של אסימוב. |
|
||||
|
||||
לצערי השמטת את מילת המפתח בקטע שנלקח מעבודתי והיא: סימולציה, או בעברית צחה: הדמייה. מדובר בפתיח על הדמייה שיכולה לעזור למין תבוני לבחון ממבט אסטרטגי את אופן התנהלותו לאורך ציר הזמן. הסבר נא לי מה כל-כך מהפכני ויוצא-דופן ברעיון זה? |
|
||||
|
||||
הדמיה זה באמת לא יוצא דופן. אבל ארגון ציווילזיות גלקטי, והוכחה שלא נשמיד את עצמנו, זה כן. |
|
||||
|
||||
המילה הדמייה נגזרת מהמילה דמיון, ובמקרה זה מדובר על תרחיש שבו ציוויליזיה תבונית חייבת להראות הלכה למעשה כיצד היא משתמשת במגוון כישוריה על-מנת לשמור על המשך קיומה לאורך ציר הזמן, תוך כדי גילוי ופיתוח עוצמות טבע העומדות לרשותה. הציוויליזציה שלנו הגיעה לדרגה שבה היא יכולה תוך זמן קצר ביותר להרוס את הביוספרה של עולם הבית שלה, ופוטנציאל עוצמת ההרס ילך ויגדל בחלוף השנים. לדעתי זהו הזמן המתאים לעסוק בצורה רצינית וממושכת בפיתוח שיטות שתשמשתנה כמאזנות דינמיות התומכות בהמשך הפיתוח הטכנולוגי תוך הקפדה יתירה על ערכם העליון של החיים באשר הם. ערך החיים אינו חלק אינטגרלי של המדעים המדוייקים מכיוון שהנושאים הנחקרים מבוססים על שיטת הצופה/מדווח האובייקטיבי. לפי שיטה זו קיימת התעלמות כמעט מוחלטת מהתכונות ההכרחיות המיניליות החייבות להתקיים ביצורים כמונו, על-מנת שיוכלו להיות צופים/מדווחים אובייקטיביים. במילים אחרות, לפי דעתי אין אנו יכולים להתעלם ממספר תכונות הכרחיות הטמונות בנו, ומאפשרות לנו לעסוק במדע מדוייק ותוצריו. מכאן נובע שתודעת החוקר הינה חלק אינהרנטי של כל חקירה מדעית, ואנו יכולים ללמוד רבות ע"י הכלת תודעתנו אנו כחלק לגיטימי ואינטגרלי של מרחב חקירה הקשור למדעים המדוייקים. המתמטיקה-המונדית מבוססת על גישה בסיסית זו, ובמאמר http://www.geocities.com/complementarytheory/gishoor... השתדלתי כמיטב יכולתי להדגים את תוצאות גישה בסיסית זו על יסודות שפת המתמטיקה. אשמח עם תוכל בבקשה לשאול שאלות הקשורות לתוכן מאמר זה. תודה, דורון |
|
||||
|
||||
אני מבין מתגובתך שאינך רואה עצמך כאדם "שמבין מתמטיקה" כדבריך. המתמטיקה דהיום מחולקת ל-61 ענפים שונים ולכל ענף יש את המומחים שלו. עבודתי עוסקת ביסודות הפשוטים ביותר של שפה זו, ובוחנת אותם באור חדש, על סמך תוספת פשוטה בתכלית, שאינה נמצאת במתמטיקה הקיימת, ותוספת זו מכונה בפי הקבוצה-המלאה שהיא האלמנט המשלים לקבוצה-הריקה. מתוך פשטות משלימה זו, נוצר שינוי עמוק ויסודי בכל הענפים המבוססים על מושג הקבוצה. |
|
||||
|
||||
61? על איזו חלוקה אתה מדבר? |
|
||||
|
||||
אכן אין חלוקה מדוייקת של שפת המתמטיקה לקבוצה סופית ומבחנת בבירור (כפי שניתו ללמוד מ-http://www.math.niu.edu/~rusin/known-math/index/tour... ) . לצערי שכחתי לכתוב 61 במרכאות ("61"), אך ללא ספק עצם קיומה של השיטה הדדוקטיבית מבוססת על "עולמות" תלויי-הקשר, ובכל "עולם" יכול מושג מסיום לקבל פירוש שונה מאשר "עולם" אחר, ולכן אין זה מספיק להשתמש במושג מסוים, אלא יש להבין את השימוש המדויק בו במסגרת "עולם" מתמטי נתון, ולכל "עולם" כזה מומחים משלו. כמובן שיש מספר מושגים "חוצי-עולמות" המשמשים כמושגים בסיסיים, ואחד מהמושגים האלה הינו מושג הקבוצה. עבודתי מתמקדת בשינוי יסודי של מושג הקבוצה, על-ידי הכלת השימוש במושג הקבוצה-המלאה כאלמנט משלים לקבוצה הריקה. |
|
||||
|
||||
אישית, אני אוהב את התיאור הזה של העבודה שלך הרבה יותר מהתיאור שמפורסם ב crack.net . עניין של צניעות. אולי אם הכותרת וה abstract של העבודה היו כאלו, היא לא היתה נכנסת לאתר. יצא לי להתקל בעבר בכל מיני ענפים מתמטיים ומערכות אקסיומתיות. הצלחתי להבין אותם, פחות או יותר1. לצערי (הכנה), אני לא הצלחתי להבין את המאמרים שלך2. הבנתי שהתוספת שלך היא תוספת לתורת הקבוצות (שאותה דווקא למדתי). אני מבין גם שהגישה שלך היא לא אקסיומתית, אלא גישה שפשוט אומרת שקבוצה היא אוסף של אלמנטים. האם הדבר היחיד שאתה מוסיף למערכת הוא הקבוצה המלאה? ואיך את מתמודד עם הבעיות הקלאסיות של הגישה הזו - למשל הפרדוקס שיוצרת "קבוצת כל הקבוצות"? --- 1 מתמטיקאים, נא לא לגחך בקול רם. 2 כמו אחרים באתר - ודווקא ניסית לקרוא. |
|
||||
|
||||
היות ותוכן הקבוצה-המלאה הינו אלמנט רציף לחלוטין ובלתי-פריק, אין הוא מכיל בתוכו שום תת-אלאמנטים, ולכן הוא אינו ניתן לתיאור במושגים של אוסף. מכאן נובע שהקבוצה המלאה איננה אוסף ולכן איננה שקולה ל"קבוצת כל הקבוצות" המבוססת על מושג האוסף. המערכת שלי בהחלט מבוססת על אקסיומות: http://www.geocities.com/complementarytheory/My-firs... |
|
||||
|
||||
אחד מקני המידה לפיהם שופטים בדר''כ תורה מתמטית חדשה זה האם התורה אומרת משהו חדש על מושגים שהכרנו עוד קודם. לא שזה לא מספיק להגדיר מושגים חדשים ולהראות קשרים ביניהם, אבל להצליח להאיר באור חדש נושא ישן זהו סימן סביר למדי לחשיבות של עבודה מתמטית. מהבחינה הזו, הדיבורים שלך על ''שינוי עמוק ויסודי'' הינם יומרניים משהו. אתה לא באמת אומר משהו חדש על דברים ישנים, אלא רק משחק בארגז החול הפרטי שלך. זה יכול להיות יפה ומעניין, אבל קצת מוגזם להקנות לזה חשיבת רבה כל כך. |
|
||||
|
||||
אם הפרשנות של עוזי (תגובה 326435, תגובה 326530) נכונה, כנראה שדורון באמת אומר משהו חדש על דברים ישנים - כיצד ניתן לתאר אותם בצורה מסובכת. |
|
||||
|
||||
גדי, אנא עיין ב-תגובה 326624 תודה, דורון |
|
||||
|
||||
הי גדי אני מאד מברך על החלטתך להתעמך בעבודות של דורון שדמי ( צבי ינאי קישר ביננו לפני כ 3 שנים) אגב, לי עצמי לקח הדבר 3 שנים עד שהתחלתי להבין במה מדובר ועוד הגעתי לכך מתוך הבנה ומחקר של 20 שנים, וידיעה כי ניתן לחולל שינוי תפיסה של שפת הממתטיקה באמצעות הגדרה חדשה של מושג המספר( כיניתי זאת בזמנו - מתמטיקה אורגנית) אנא עיין בקישור המצורף, זה עשוי להמריץ עוד יותר את המוטיבציה שלך להבין את הדברים וגם את הזיקה שלהם לפיסיקה. בהצלחה רבה משה |
|
||||
|
||||
טוב, תחזרו אלי עוד שלוש שנים. |
|
||||
|
||||
בסדר גמור , מה זה 3 שנים לעומת 2500 שנים של מתמטיקה אוקלידית |
|
||||
|
||||
שלום גיל, אנא עיין ב תגובה 326605 אשמח לתגובתך. תודה, דורון |
|
||||
|
||||
עיינתי. אולי הרעיונות שלך מסבירים משהו חדש על התבונה האנושית או על חשיבות תודעת החוקר במחקר המדעי, אבל אלו אינם נושאים ''ישנים'' במתמטיקה. אז אולי תרומה פילוסופית אתה מעלה (את זאת ישפטו פילוסופים מן הסתם), אבל החשיבות של הטקסט הזה מבחינה מתמטית עדיין מוטלת בספק רב בשל העובדה שאין בו שום עובדה חדשה שמנוסחת בשפה ישנה. |
|
||||
|
||||
בוודאי שיש עובדה חדשה המנוסחת בשפה ישנה. עובדה זו היא קיומה של הקבוצה-המלאה המוסיפה מימד חדש למושג הישן של הקבוצה. לדוגמא עיין ב: תגובה 326652 תודה לך, דורון |
|
||||
|
||||
לצערי, טרם ראיתי ניסוח מתמטי של הקבוצה המלאה בשפה מתמטית שאני מסוגל להבין. אחת משתיים: או שהגדרת את המושג הזה בשפה טבעית (דבר לגיטימי כשמגדירים מושגי יסוד) או שהשתמשת בשפה מתמטית שאני לא מכיר. |
|
||||
|
||||
גדי, אנא עיין בתשובתי אליך ב תגובה 326667 אכן אני משתמש בשפה מתמטית שאתה לא מכיר ושמה מתממטיקה מונדית, המבוססת על לוגיקה המכונה בפי "לוגיקה-משלימה" (Complementary Logic) יסודותיה של לוגיקה זו מוסברים בעמודים 10 עד 19 ב- http://www.geocities.com/complementarytheory/No-Naiv... (תחת הכותרת Complementary Logic) תודה, דורון |
|
||||
|
||||
נו, אז גיל צודק. |
|
||||
|
||||
עיינתי, עיינתי. כבר אנו לך יפה, אבל בכל זאת. נניח שאנשים (ומתמטיקאים בפרט) מכירים כבר יריעות חלקות, ואתה הראשון שעלה פתאום על הרעיון של קוהומולוגית דה-ראהם. זה שתחשב חבורות קוהומולוגיה של יריעות או תמצא יחסים בין החבורות הללו לבין עצמן זה נחמד ואולי מעניין, אבל בשלב הראשוני הזה זה עדיין לא מרשים כל כך - אתה בסך הכל מחשב מושגים שאתה המצאת. אם לעומת זאת בעזרת המושגים החדשים שלך אתה מצליח לפתע להראות שהדרגה של כל פונקציה חלקה מספירה לטורוס היא אפס, זה כבר מעניין. כולם יודעים מה משמעות המילים ''טורוס'' ''ספירה'' ו''דרגה'', והחבורות שלך והיחסים ביניהן פתאום מאפשרות לך לומר משהו חדש על המושגים הללו. את זה כל העבודה וכל הניירות שלך לא עושים. הקבוצה המלאה זו הגדרה שלך, לא משהו ישן שכולם מכירים, בעוד שאני שאלתי לגבי עובדות חדשות מנוסחות בשפה ישנה. |
|
||||
|
||||
דוגמה יותר קריאה לאנשים שלא מבינים מתמטיקה, כמוני: נניח שיש לך אינטגרל מסויים שאתה לא יודע לפתור כי הוא קשה, ואז פתאום בא איזה טרחן כפייתי ומקשקש על זה שהוא המציא "שורש של מינוס אחד" וכל מני דברים משונים ומתחיל לדבר על "משפט השארית" ואומר לך המון ג'יבריש, ואז פתאום מחשב את האינטגרל שאתה נתקעת בו בעזרת המספרים הדמיוניים שלו - אז זה יהיה מעניין. כמובן שזה יכול להיות מעניין גם בזכות עצמו, אבל זה כבר הרבה יותר קשה. |
|
||||
|
||||
אתה מסתכל על העניין מזוית צרה מדי. המתמטיקה המונאדית במצבה העשווי אולי לא מסייעת לפתור בעיות במתמטיקה הרגילה, אבל היא נותנת תשובות לשאלות על החיים, היקום וכל השאר. |
|
||||
|
||||
גיל לדרמן: את זה כל העבודה וכל הניירות שלך לא עושים. דורון: היות ואינך מכיר את מכלול עבודתי (מה שמכונה בפיך "הניירות שלך") אני מציע לך להמנע מהגישה הזלזלנית-משהו, שלא תעזור לפיתוח דיון משמעותי ביננו. כנראה שעדיין לא קלטת שכל עבודתי עוסקת רק ואך ורק ביסודות הפשוטים ביור של שפת מתמתטיקה, לדוגמא: במתמטיקה הרגילה המושגים קבוצה ואוסף שקולים זה לזה, וזהו הכשל היסודי ביותר של קנטור, הנחשב לאבי תורת-הקבוצות. בעבודתי אני מראה שמושג האוסף אינו יותר מאשר סוג מסוים של אלמנט, היכול להחקר ממסגרתה של תורת-קבוצות. בכך מוכלל מושג הקבוצה, ובמסגרת גישה מוכללת זו ניתן לדון במושגים כמו ריקנות מוחלטת ומלאות מוחלטת (אשר לא ניתן לתארן במושגים של אוסף) במסגרתה של תורת-קבוצות. המושג של קבוצה-מלאה אינו נכלל ב-ZF או כל תורת-קבוצות אחרת המבוססת על ההנחה שקבוצה שקולה לאוסף, ולמיטב ידיעתי (ואשמח מאוד אם תאיר את עיני בנושא) לא קיימת תורת-קבוצות במתמטיקה המודרנית, המבוססת על התובנה של אי-שקילות מושג הקבוצה עם מושג האוסף (כפי שאני נוקט בעבודתי). |
|
||||
|
||||
אני מציע לך להמנע מהגישה הזלזלנית-משהו בקנטור (''הכשל היסודי ביותר''), שהתורה שלו הניחה בסיס להרבה מאוד דברים יפים ואין על זה חולק, בזמן שעדיין לא ברור מה התורה שלך עושה ושלו לא עושה. |
|
||||
|
||||
אני לא מזלזל בחשיבות הפילוסופית של עבודתך (את זה אני אניח לפילוסופים), אלא מציין עובדה שטרם הצלחת לסתור - לכל העבודה שלך אין ולו תוצאה אחת שניתן לנסח אותה לפרופסור למתמטיקה (או לסטודנט שנה ראשונה לצורך העניין) בשפה שהוא מכיר. מהבחינה הזו, העבודה שלך חסרת כל חשיבות מתמטית כמעט לפי הגדרה. ודרך אגב, אני גם לא ממש בטוח מה זה ה"אוסף" הזה שאתה מדבר עליו. בספרות שאני קורא אוסף (collection) משמש בדר"כ כמילה לא פורמלית ל"קבוצה" בתחומים בהם לתורת הקבוצות אין כמעט שום תפקיד, ובתורת הקבוצות מדברים על "קבוצה" או "מחלקה" - המרצה שלי כמעט אף פעם לא השתמש במילה "אוסף". |
|
||||
|
||||
אוסף הוא Set או Multiset |
|
||||
|
||||
אני מוכרח להעיר הערה שמציקה לי כבר משלב מוקדם בדיון: שוב ושוב אתה טוען שקנטור יצר זהות בין המושגים "קבוצה" ו"אוסף", ובכך יצר בלבול שמטעה מתמטיקאים עד היום. אתה *כמעט* צודק: קנטור באמת התייחס לקבוצה במובן האינטואיטיבי של המילה. המובן האינטואיטיבי הזה מאפשר להגדיר קבוצות מפלצתיות כמו "קבוצת כל הקבוצות" ולהגיע לסתירה. כמו הרבה תחומי מתמטיקה במאה העשרים, גם תורת הקבוצות עברה אקסיומטיזציה כדי להמנע מאותן סתירות. היום אין (!) הגדרה לקבוצה. קבוצה היא אובייקט שמקיים דרישות מסוימות, שהן אקסיומות ZF. מן הסתם, קנטור לא הכיר את ZF. כך, אגב, מתייחסת המתמטיקה למושגים רבים. בקיצור, כבר שנים קיימת הפרדה במתמטיקה בין קבוצה לאוסף. אוסף כל הקבוצות הוא לא קבוצה. אוסף כל הקבוצות שלא מכילות את עצמן הוא לא קבוצה. אוסף כל הסודרים הוא לא קבוצה. |
|
||||
|
||||
גיל כבר כתב כאן נכון על כך ש"אוסף" (Collection) זו מילה חסרת משמעות במתמטיקה (לפחות זו שאני וכנראה גם הוא מכירים). המונח המקובל יותר לתיאור ה"אוספים" שעליהם אתה מדבר בסוף ההודעה שלך הוא "מחלקה" (Class, אם איני טועה). אני חושב שדורון מנסה לבצע הפרדה בין קבוצה - שהיא ה"קופסה" שמכילה דברים, וניתן לדבר עליה גם כעומדת בפני עצמה ("הקבוצה הריקה") ובין התוכן שהיא מכילה, שהוא כנראה ה"אוסף" המדובר. הטענה שלו היא שניתן לדמיין קבוצה שהיא מלאה לגמרי, בצורה כזו שלא ניתן להתייחס לאיברים שהיא מכילה. אפשר לדמיין את זה במונחים של עליית הגג הדמיונית שלי: יש שם כל כך הרבה זבל שאי אפשר להתחיל להוציא ממנה דברים כי אין לך מושג מאיפה להתחיל. הבעיה היא שאחרי שמקבלים את הקיום הפילוסופי של עליית גג שכזו, לא ברור איך היא משתלבת במתמטיקה ומה עושים איתה, בניגוד לקבוצה הריקה שדווקא מצליחים לבנות ממנה דברים יפים (למשל, את כל המספרים). כאן נכנס דורון עם כל מני סימנים של {__} ומדבר על זה שקנטור טעה, אבל אני מאבד אותו. אפילו איך מגדירים "קבוצה מלאה" בצורה אקסיומטית אני לא מבין. אני יכול להגיד "הקבוצה המלאה היא קבוצה שכל האיברים שייכים לה" אבל אז ברור שזה לא יהיה מה שדורון מתכוון אליו אלא ורסיה של "קבוצת כל הקבוצות" הידועה לשמצה. אני יכול להגיד "הקבוצה המלאה היא קבוצה שאף איבר לא שייך לה" כי הרי אי אפשר להתייחס לאף אחד מהאיברים שבתוכה, אבל אז פשוט נתתי שם משונה מאוד לקבוצה הריקה. אני יכול להגיד "הקבוצה המלאה היא הקבוצה המלאה" אבל זה יהיה סתם עצוב. לסיום אפשר לנסות ולהשתמש בהגדרה שנראה לי שדורון השתמש בה: "הקבוצה המלאה היא הקבוצה שמכילה "רצף"", כשלא ברור מה זה "רצף", אבל זה כנראה איבר בעל גודל שאינו 0 שאינו ניתן להצגה כאיחוד, סכום או משהו דומה של איברים אחרים. לא ברור לי מה עושים עם רצף שכזה. |
|
||||
|
||||
(קודם כל, אני מקבל את ההערה הטרמינולוגית בהתחלה.) הבנתי מה דורון מה לעשות. הטענה שלי היא שהוא טועה כבר בצעד הראשון: ניסיון להגדיר מחדש "קבוצה". תורת הקבוצות הנאיבית ראתה קבוצה כמושג ברור מאליו. תורת הקבוצות האקסיומטית לא מגדירה קבוצה. היא רואה את הקבוצות כמחלקת אובייקטים שמקיימת את ZF (קיימת הקבוצה הריקה, לכל קבוצה קיימת קבוצת החזקה שלה, קיימת קבוצה אינסופית בת-מניה...) הניסיון להגדיר מחדש באופן אינטואיטיבי "קבוצה", "נקודה" ועל אחת כמה וכמה "רצף" (במשמעות של דורון) היא כבר צעד מוטעה. |
|
||||
|
||||
אולי עוד יצא מהדיון הזה משהו מעניין. לא חשבתי עד היום על ZF בתור אקסיומות דומות לאלו, נניח, של תורת החבורות - כלומר, רשימת "דרישות" שאנחנו דורשים ממבנה ואז אומרים "אם הוא מקיים אותן אז כל המשפטים היפים שהראינו עבור חבורות מתקיימים עבורו", ואז הולכים ומחפשים בטבע מקרים שונים של חבורות. דווקא בכל הנוגע ל-ZF חשבתי עליהן כעל אקסיומות במובן ה"קלאסי": הנחות יסוד ש"ברור" שהן נכונות. ההבדל הוא שצריך להתחיל מאיפה שהוא. אני יכול להגדיר אקסיומות של חבורות, ולא תהיה לי בעיה להראות דברים שמקיימים את האקסיומות גם בלי "להמציא" אותם: אני אביא את המספרים השלמים, למשל. אבל מכיוון ש-ZF מגדירות את האובייקטים הבסיסיים ביותר, שמהם נבנים כל שאר האובייקטים, אין לנו דרך "לקיים" את האקסיומות של ZF, ולכן אנחנו "ממציאים" אובייקטים, או מניחים שהם קיימים. במילים אחרות, אנחנו מניחים שקיים משהו שמקיים את ZF ונותנים ל-ZF להגדיר אותו (בשונה מהמקרה של חבורות - כי הרי גם כשהשלמים מהווים חבורה, אנחנו עדיין חושבים עליהם כעל השלמים, לא כעל משהו שהמידע היחיד שלנו עליו הוא שהוא "חבורה"). האם אני טועה, ובעצם אין הבדל? |
|
||||
|
||||
אולי יש הבדל קטן: ההגדרה של חבורה מתארת את הדרישות מחבורה, ולא מקבוצת כל החבורות. ZF לא מגדירה קבוצה, אלא את התכונות של מחלקת הקבוצות. בדומה לגיאומטריה, ZF מבטיחה לנו שיש קבוצות מסוימות במחלקה, ומאפשרת לנו להסיק את קיומן של קבוצות מקיומן של קבוצות אחרות (זו למעשה "בנייה" של קבוצות, כמו "בנייה" בגיאומטריה, שהיא למעשה רק הוכחת קיום). |
|
||||
|
||||
נדמה לי שגדי שאל על ההבדל בין מודל לתורת החבורות (דהיינו חבורה) לבין מודל לתורת הקבוצות ("היקום המתמטי"+-). |
|
||||
|
||||
אני למדתי ש''מודל'' הוא, בבסיסו, קבוצה. לכן ''מודל לתורת הקבוצות'' נשמע כמו הנחת המבוקש. כן, אני יודע מה תגיד עכשיו, כבר הצקתי למרצים שלי בעניין והם אמרו לי להשאיר את זה לפילוסופים. זה גם לא ממש מפריע לי. |
|
||||
|
||||
מתוך ענין: מה אני אגיד עכשיו?1 ניסיתי לחשוב איך לגשת לענין ועוד לא החלטתי. תן תחזית ואז נמשיך. 1 ודאי שלא אומר לך להשאיר את זה לפילוסופים. |
|
||||
|
||||
אני לא רואה שום בעיה באקסיומות שהן "הנחת המבוקש", כשהנחות הבסיס הן סבירות. הרי צריך להתחיל מאיפה שהוא. במקרה הכי גרוע אפשר תמיד להגיד "אם ZF נכונה אז..." לפני כל משפט מתמטי. אם זה לא מפריע לי, לא ברור למה שזה יפריע לך. מה שמעניין באמת הוא מה יקרה אם יתברר שההנחות "לא נכונות", כלומר "אין" קבוצה ריקה (איפה?) הרי מטוסים לא יתחילו ליפול, וקבצים מוצפנים לא יהפכו פתאום לקריאים, ותורת גלואה תמשיך להיות יפה. אז מה בעצם ההבדל? |
|
||||
|
||||
לדעתי, המתמטיקה לא צריכה להתחיל משום דבר. ההגדרה למערכת אקסיומות בדיון 2396 מספיקה כדי להגדיר מערכות אקסיומות לא אינטואיטיביות בכלל. לנו, כבני אדם, ברור למשל שכל טענה יכולה להיות "נכונה" ויכולה להיות "לא נכונה", כי לנו נוח לעסוק במערכות שבהן לכל טענה יש "שלילה". למתמטיקה אין צורך כזה. הצורך הוא שלנו. גם הצורך בהנחה ש-ZF "נכונה" במובן כלשהו הוא צורך שלנו, לא של המתמטיקה. (אני אקל על המתדיינים ואציין מה נקודת התורפה של הגישה הזאת: מערכת אקסיומות מוגדרת כפונקציה. כלומר, אנחנו צריכים להאמין בקיום הבלתי-תלוי של פונקציות. כמו כן, במערכת אקסיומות טענה ניתנת להוכחה, או שלא. כלומר, כבר בהגדרה ה"חיצונית" של מערכת אקסיומות, יש ל"לא" משמעות טבעית. אני רק אציין, שהצורך ב"הסתכלות מבחוץ" על המערכת כפונקציה, והצורך ליצור זהות בין ה"לא" הטבעי למושג "לא" במערכת, הוא צורך אנושי.) |
|
||||
|
||||
אין לי עדיין בסיס מתמטי מי-יודע-מה, אבל אני חושב שיש לי כיוון לתשובה שהוא לפחות מעניין: קודם כל כמה נקודות על המתמטיקה באופן כללי, שאין בהן חידוש אבל הן הקדמה לרעיון עצמו: הרעיון הוא לתכנן מערכות של סמלים כך שמניפולציות עליהן יהיו מעין-איזומורפיות למניפולציות על רעיונות, שבתורם ינסו להתאים למושא. כל מה שקורה בתוך גבולות המתמטיקה הוא במובן מסוים ריק מתוכן אם מנתקים אותו מהמשמעות שאנחנו מעניקים לאקקסיומות בהקשר ספציפי. [ואני אומר את זה מתוך הערכה עצומה למתמטיקה ולתפקיד שלה בייעול החשיבה] מושגים מסוימים במתמטיקה לא מתאימים באופן ישיר לרעיונות מסוימים לגבי המציאות, אלא יש להם איזה תפקיד פנים-מתמטי. המשמעות שלהם נגזרת מהתפקיד שלהם ברשת המושגים כולה, המשיקה בקצותיה עם המציאות. כל זמן שההיסקים תקפים, אין חשש ל"טעות" במתמטיקה. זאת בתנאי שלא התחייבנו לייחס את האקסיומות למושא מסוים. עכשיו לגבי יסודות המתמטיקה: אני נוטה לתפוס את אקסיומות הלוגיקה ותורת הקבוצות באופן די דומה לאקסיומות בתחומים אחרים, אלא שהן בעלות תפקיד ייחודי בכינון השפה המתמטית. כך לדוגמה כללי היעדר הסתירה והשלישי הנמנע (ושיטות ההיסק הנגזרות מהם) הם לא איזו אמת מטא-פיזית שקיימת מעצמה, אלא ה"אקסיומות" שנותנות משמעות למילה "לא". אי אפשר להיות "ראשוני וגם לא ראשוני", כי הכוונה באמירה "לא ראשוני" היא בדיוק לא לאפשר את זה. כך גם הכמתים "יש" ו"כל" מקיימים אקסיומות מסוימות לא כגזירת גורל מטא-פיזית, אלא כמה שמגדיר את המשמעות ה"דקדוקית" שלהם. [כמובן, אני נאלץ להשתמש במושגים הלוגיים בתיאור שלי. השימוש הזה הוא לא ניסיון להצדיק אותם באמצעות עצמם, אלא הוא נובע מכך שהם תנאי לכל שימוש משמעותי בשפה]. אין כאן חשש לטעות, כי אנחנו עוד לא אומרים כלום על המציאות. כל מה שאנחנו אומרים הוא ש"כשאומר לך משפט בעל המבנה הלוגי ___, תוכל להסיק ממנו על דעתי שאני מאמין גם ב___". לגבי תורת הקבוצות זה קצת יותר מרחיק לכת לומר את זה, אבל עדיין נראה לי סביר. כל תפקיד האקסיומות של תורת הקבוצות הוא שכשיבוא יום ותרצה לתאר על רעיונות יותר מורכבים, תוכל לטעון טענות יותר בנוחות. לומר ש"הקבוצה הריקה לא קיימת" זה כמו לומר "אני דובר שפה בה אי אפשר לטעון טענה שאין לה מושא". אתה מחליט אם זה "נכון" או "לא נכון". רק כש(למשל)תנסח בעזרת שפת-הקבוצות המקובלת עליך טענה על המספרים הממשיים, ותרצה לטעון שהמבנה של המספרים הממשיים מתאים לתאר איזה מדד פיזיקלי, אתה אומר משהו בעל משמעות שעלול להיות שגוי. והמשמעות שלו (ובכללה המסקנות שניתן להסיק ממנו) אולי תושפע מבחירת האקסיומות בתורת הקבוצות, אך באותו אופן שמשמעות טענה בשפה דבורה מושפעת מבחירת השפה על ידי הדובר. אם אני מצביע על כלב ואומר "זה לא כלב אלא חתול", אין להאשים את "ממציא העברית" על שבחר את המילים "כלב" ו"חתול" לתאר קטגוריות אלה ולא להיפך, או על שבחר דווקא את התפקודים הדקדוקיים האלה למילים "לא" ו"אלא", אלא אותי על שאני לא מבין את הסיטואציה. אני מקווה שהצלחתי להעביר את הרעיון, ואשמח לקרוא את דעתכם עליו |
|
||||
|
||||
זהירות, אתה בדרך להיהפך לפלטוניסט (אריתמטי, לפחות). לטעמי, יש לקבל את העובדה שיסודות המתמטיקה מוגדרים פחות משחשבנו. שני העוגנים העיקריים, תורת הקבוצות והלוגיקה, לא מעוגנים בתורם בשום דבר מעבר לאינטואיציות המתמטיות שלנו1. אם קיבלנו את זה, הרי שאין הבדל בין חבורה לבין מודל לתורת הקבוצות, למעט העובדה שחבורה היא פשוטה יותר (ולכן ניתן לתאר חבורה כלשהי בקלות באינטואיציה ישירה כמו גם בתוך מודל של תוה"ק). 1 אפשר לבסס כל אחד מהם על רעהו. |
|
||||
|
||||
שנמשיך? |
|
||||
|
||||
אינטואיציות מתמטיות? אם אנחנו יכולים לבנות מכונות טיורינג ש"תשתמש" במושגי היסוד שלנו, הם לא מבוססים על אינטואיציה. נכון שלנו קשה יותר לעבוד עם מושגים כמו "טרילילי" ואנחנו זקוקים להכרת המונח האינטואיטיבי "קבוצה" כדי לעבוד עם תורת הקבוצות, אבל הבעיה היא שלנו, לא של המתמטיקה. |
|
||||
|
||||
נו, אתה מיחס לי תכונות טרחניות שלא בצדק. ודאי שאיני חושב שיש צורך באינטואיציה כדי שהפורמליזם המתמטי יעבוד. אבל (לדעתי) הפורמליזם איננו המתמטיקה, כשם ששפת סף או הגדרה של מכונת טורינג אינה מדעי המחשב. מתגובותיך בדיון זה אני נוטה לחשוב שאתה פורמליסט ועל כן דעתך כנראה שונה. |
|
||||
|
||||
לא התכוונתי לייחס לך שום תכונות טרחניות, ואם עשיתי את זה אז אני מתנצל (אילו תכונות, אגב?). בהקשר האריתמטי אפשר לסווג אותי כפלטוניסט (וגם בהקשר החישובי שהזכרת). אני בהחלט מאמין שיש ערך אמת לכל טענה שניתן לנסח בשפה של PA. כאשר אנחנו מגיעים לקבוצות, יש כבר בעיה: המשמעות האינטואיטיבית של "קבוצה" אכזבה בעבר. לפני שהתגלו הפרדוקסים שעוסקים בקבוצות (ובראשם הפרדוקס של ראסל, כמובן) היה נדמה שאנחנו מבינים את מושג הקבוצה באותה רמה שאנחנו מבינים את מושג המספר הטבעי. הפרדוקסים הוכיחו לנו שיש אובייקטים מתמטיים שאנחנו נסווג באופן טבעי כקבוצות, אך סותרים כמה הנחות שלנו על קבוצות. לכן, הקבוצות היחידות שאני בטוח שהן קבוצות הן אלה שניתנות לבנייה ב-ZF. |
|
||||
|
||||
"היה נדמה שאנחנו מבינים את מושג הקבוצה באותה רמה שאנחנו מבינים את מושג המספר הטבעי." אני חושב שהבטחון שלך בהבנת המספר הטבעי לא במקומו, כי אתה מתעלם מדרגות הסימטריה הפנימית שלו, המתקיימות בין מצב מקבילי למצב סידרתי. אקסיומות פאנו ו-ZF מגדירות רק את המצב הסדרתי, אך מתעלמות לחלוטין מהמצב המקבילי ומכל מצבי הבייניים המתקיימים בין המצב המקבילי המלא לבין המצב הסידרתי המלא, כפי שמוגדם במאמר המצורף: http://www.geocities.com/complementarytheory/ONN1.pd... |
|
||||
|
||||
התודעה שלי מגדירה את מכונת טיורינג, ומכונת טיורינג יכולה לעסוק במספרים הטבעיים, אז מכאן נובע שהתודעה שלי יכולה להבין גם 1 את המספרים הטבעיים. אם אתה רוצה, אתה מוזמן להחליף בכל מקום בתגובה שלי את המושג "מספר טבעי" במושג "סדרה סופית של אפסים ואחדות". אגב, מעניין אותי לשאול: אם אתה רואה שלושה פילים, אתה באמת משוכנע שה"שלושיות" של הפילים היא רק השתקפות של התודעה, ולא תכונה אמיתית של אוסף הפילים? 1 ואולי רק. |
|
||||
|
||||
גיל: אחד מקני המידה לפיהם שופטים בדר"כ תורה מתמטית חדשה זה האם התורה אומרת משהו חדש על מושגים שהכרנו עוד קודם. דורון: הנה אמירה חדשה על ההוכחה על דרך השלילה של קנטור בעניין |P(Z*)| > |Z*| (הדיון המלא לנ"ל נמצא ב: http://www.createforum.com/phpbb/viewtopic.php?t=27&... )Let us explain Cantor's proof about |P(Z*)| > |Z*|.
At the first step of his proof, Cantor shows that there is injection between P(Z*) and Z*, so after this step we know that |P(Z*)| > = |Z*|, or in other words, |P(Z*)| cannot be less than |Z*|. In order to clearly show that |P(Z*)| > |Z*|, we have to show that |P(Z*)| not= |Z*|. If we show that |P(Z*)| not= |Z*|, than and only than we have no choice but to conclude that |P(Z*)| > |Z*|. It can be done only if we can show that there is no bijection (no no_surjection but no bijection) between P(Z*) and Z*. Cantor tried to show, by using S definition, that any mapping between some arbitrary z in Z* and S, leading us to contradiction, and since this is the case, we can clearly conclude that there is no such z in Z* that is mapped with S (because of S definition) and we prove that |P(Z*)| > |Z*|. But I show that S is based on a definition that is a self-contradiction, and therefore S does not exist. My argument goes like this: 1) Any set has unique members, for example: {a,a,b,c,…} = {a,b,c,…}, so S has unique members. 2) Any z in Z* is mapped once and only once with some P(Z*) member. 3) By (1) and (2), when t (which is some arbitrary z in Z*) map is checked against S, we know that t is not in S, but by S definition, t must be in S, but if t is in S than by S definition t must not be in S, … etc. 4) By S definition itself, this set MUST include ALL of z in Z* members that are paired with P(Z*) members that do not contain them (and S is a P(Z*) member; therefore by (1) and (2), it MUST include t within it, but it cannot be done because of the same S definition). 5) If t is in S, then by S definition we can conclude that the term ALL = more_than_ALL. 6) If t is not in S, then by S definition we can conclude that the term ALL = less_than_ALL. 7) By (5) and (6) we can conclude that the term ALL = not_ALL, which is a contradiction in Excluded-Middle logical reasoning. Since (by (7)) S definition is based on the term ALL = not_ALL, S definition does not exist, and Cantors proof by contradiction does not hold. Please pay attention that in this post I did not use the Hierarchy of dependency argument (which is another way to show why S does not exist). In this post I used http://www.geocities.com/complementarytheory/Russell... , which clearly shows that Russell's first paradox is not a paradox in Excluded-Middle logical reasoning. |
|
||||
|
||||
אתה טוחן מים. "שפה ישנה" זה ZFC (או גרסאות "עיליות" שלה שניתנות לתרגום אם רק היינו מתעקשים). מה זה ALL = more_than_ALL ב ZFC? לא מובן. זו המצאה שלך, ולכן שוב אתה נשאר באותו ארגז חול זנוח ולא מעניין כל כך. S הינה קבוצה על פי ZFC באופן ברור למדי - Z זו קבוצה, PZ (לא הולך לי עם הסוגריים ביחד עם אנגלית) זו קבוצה על פי אקסיומת החזקה, פונקציה f בין שתי קבוצות זו קבוצה, וכמובן שאוסף כל האיברים בקבוצה אשר מקיימים נוסחא בשפה של תורת הקבוצות הינו קבוצה לפי אקסיומת ההפרדה. זה כל מה שנדרש אם מקבלים את ZFC - לעקוב אחרי אקסיומות וכללי הסקה. עכשיו, אחת משתיים. או שאתה טוען ש S איננה קבוצה לפי ZFC ואז מוטל עליך למצוא כשל בטיעון הישיר למדי שמראה כי S הינה קבוצה על פי האקסיומות, או שאתה מדבר על משהו אחר מ ZFC, ובמקרה הזה אתה שוב מספר לי על תאוריות פרטיות שלך מבלי לומר ולו דבר אחד חדש בשפה הישנה והמוכרת לי. הניחוש שלי הוא שמדובר במקרה השני, מה ששוב מותיר אותך עם הרבה פילוסופיה אולם בלי שוב דבר חשוב לומר על מתמטיקה. |
|
||||
|
||||
גיל לדרמן: או שאתה טוען ש S איננה קבוצה לפי ZFC ואז מוטל עליך למצוא כשל בטיעון הישיר למדי שמראה כי S הינה קבוצה על פי האקסיומות. דורון: הגישה הזלזלנית שלך ("אתה טוחן מים" , "הניחוש שלי הוא שמדובר במקרה השני, מה ששוב מותיר אותך עם הרבה פילוסופיה אולם בלי שוב דבר חשוב לומר על מתמטיקה" ) איננה מקובלת אלי, ולכן אעשה ניסיון אחרון ליצור דיאלוג משמעותי איתך. אם אתה אינך יכול להמנע מגישתך הנ"ל ראה נא בזאת את תגובתי האחרונה אליך. תגובתי: גיל: S הינה קבוצה על פי ZFC באופן ברור למדי... דורון: טעות בידך. S מבוססת על הגדרה שיש בה סתירה עצמית ברורה, המונעת את קיומה. כתוצאה מכך, לא ניתן להשתמש ב-S כדי להשלים את ההוכחה על דרך השלילה של קנטור. אני מציע לך לכבוש את הגישה המזלזלת הבסיסית שלך ולקרוא בזהירות רבה את תוכן התגובה הקודמת שלי אליך (כולל הקישור המצורף). תודה, דורון |
|
||||
|
||||
קראתי בזהירות גם את התגובה שלך וגם את הקישור המצורף, ולא התרשמתי כל כך. קורה. אני מסביר לך שלמיטב הכרתי (והכרתם של לא מעט אנשים אחרים, לא כולם מטומטמים) הקבוצה S מוגדרת היטב על פי האקסיומות של ZFC (ועל פי הנחת השלילה בדבר קיומה של פונקצית התאמה בין Z ל PZ). אז יכול להיות שאתה טוען שאני טועה והם טועים - ואז מוטל עליך להראות זאת. להגיד שהיא "מבוססת על הגדרה שיש בה סתירה עצמית ברורה" זה בעצם לא להגיד כלום. האם אתה מסכים ש PZ זו קבוצה? אם כך, האם אתה מסכים שפונקציה f בין Z ל PZ הינה קבוצה? ואם כך, האם לא ברור לנו מאקסיומת ההפרדה שגם S הינה קבוצה? או שבעצם אתה לא מתבסס על אקסיומת החזקה ואקסיומת ההפרדה ושאר האקסיומות של ZFC, ובמקום זה אתה מדבר על תורת הקבוצות של דורון שדמי. במקרה זה, אני חוזר ואומר שאין שום דבר מעניין במיוחד בתאוריה שלא מספרת על שום דבר מלבד על עצמה, וגם מה שהיא מספרת על עצמה לא חורג מקצת קומבינטוריקה סופית אלמנטרית למדי. |
|
||||
|
||||
האם הוא פרסם את עבודתך בלי ששלחת אותה אליו? |
|
||||
|
||||
בוודאי שלא. ראה נא את תגובתי הקודמת אליך. תודה, דורון |
|
||||
|
||||
http://www.physicsforums.com/showthread.php?t=82541&...
Fantastic idea for my friends -------------------------------------------------------------------------------- Quote: Originally Posted by Victor Sorokine Condition at present Fantastic idea for my friends Right contradiction: the number u is infinite (1°) Let a^n + b^n – c^n = 0, (2°) where for integers a, b, c the number u = a + b – c > 0, where (a_1b_1c_1)_1 =/ 0, u_(k) = 0, u_{k+1} * 0, k > 0. (3°) Let's transform the digit u_{k+1} into 1. (4°) Let's assume that the number u contains only one non-zero digit (u_{k+1}). Then: (4a°) if ((a_(k) + b_(k) – c_(k))_{k+1} = 0, then a_{k+1} + a_{k+1} – a_{k+1} = 1, U"_{k+2} = a_{k+1} + a_{k+1} – a_{k+1} = 1 and the number U' contains only one non-zero digit (U'_{k+2} = 1). Or: u is even, but a^n + b^n – c^n is odd, that is impossible. (4b°) if ((a_(k) + b_(k) – c_(k))_{k+1} = 1, then a_{k+1} + a_{k+1} – a_{k+1} = 0, U"_{k+2} = 0 and U'_{k+2} = 1. Or: u is odd, but a^n + b^n – c^n even is, that is impossible. Therefore there exists second non-zero digit in the number u: u_s. (5°) Let's assume that the number u contains only one non-zero digit (u_{k+1}). Then: (5a°) if ((a_(s) + b_(s) – c_(s))_{k+1} is odd, then u is even, but U"_{s+1} (and a^n + b^n – c^n) is odd, that is impossible. (5b°) if ((a_(s) + b_(s) – c_(s))_{k+1} is even, then u is odd, but U"_{s+1} (and a^n + b^n – c^n) is even, that is impossible. Therefore there exists third non-zero digit in the number u: u_r. (6°) Let's assume… AND SO AD INFINITUM Victor Sorokine |
|
||||
|
||||
ביולי 2005 העבודה של דורון שדמי זכתה ל"הכרה" של האתר crack dot net . האתר מדרג את העבודה בדירוג CRANKIEST - דרגה שלישית מתוך ארבע, ודרוג מקביל לדרוג של האתר zerobyzero אליו התייחס אלון בכתבה המקורית. מנקודת מבטי אגב, זוהי התקדמות עצומה בהכרה בתורה של דורון בכל העולם כשינוי הפרדיגמה של שפת המתמטיקה. בשנה שיש לה משמעות מיוחדת למי שמבין את 2005 מבחינה מתמטית ( המאמר הראשון של אינשטיין פורסם כמדומני ביוני 1905 ) |
|
||||
|
||||
מה שאתה עושה לדורון זה מאד לא יפה ולא מכובד. האיש השקיע הרבה בתאוריה שלו ומנסה להציג אותה בצורה מכובדת עם מי שמעוניין ברצינות להשקיע ולהבין אותו. פתאום אתה מופיע בתור גרופי משולהב והופך את הדיון העניני לקריקטורה Yנטית או איזה טיש לובביצ'י כמו ההשוואה שאתה עושה בין שדמי לאיינשטיין. |
|
||||
|
||||
האיל האלמוני : מה שאתה עושה לדורון זה מאד לא יפה ולא מכובד. האיש השקיע הרבה בתאוריה שלו ומנסה להציג אותה בצורה מכובדת עם מי שמעוניין ברצינות להשקיע ולהבין אותו. פתאום אתה מופיע בתור גרופי משולהב והופך את הדיון העניני לקריקטורה Yנטית או איזה טיש לובביצ'י כמו ההשוואה שאתה עושה בין שדמי לאיינשטיין. משה: בכדי ליצור פיסיקה חדשה שיש בה עיקרון קביעות מהירות האור ועיקרון היחסות הצביע אינשטיין בשנת 1905 על ההנחה הסמויה של הפיסיקה והוא כינה זאת "טראנספורמציות גלילאו". כשעבר לטרנספורמציות לורנץ הוא קיבל כי האורך , המסה, והזמן הם גדלים יחסיים. ההנחה הסמויה של המתמטיקה הרגילה היא שהקו מורכב מרצף של נקודות. החבירה בין הרצף לבדידיות בוראת את המספרים האורגנים, תפיסה חדשה של תורת הקבוצות ומושג הפונקציה. שלשת אלו ( המספר, הקבוצה, והפונקציה ) הם כידוע לך מטבע עובר לסוחר בכל 61 ענפי המתמטיקה השונים. |
|
||||
|
||||
האם קראת את המאמר של אלון עמית שתחתיו אנחנו מתדיינים? ואת המאמר החדש שלו? האם אתה חושב שיש סתירה *פנימית* במושגים האלה כפי שהם מוגדרים ע"י מתמטיקאים? האם אתה חושב שהעובדה שההגדרות שהמתמטיקאים משתמשים בהן לא "נכונות" (מדוע בכלל?) הופכת את המתמטיקה הקיימת ל"לא-חשובה"? |
|
||||
|
||||
האיל האלמוני הראשון : מה שאתה עושה לדורון זה מאד לא יפה ולא מכובד. האיש השקיע הרבה בתאוריה שלו ומנסה להציג אותה בצורה מכובדת עם מי שמעוניין ברצינות להשקיע ולהבין אותו. פתאום אתה מופיע בתור גרופי משולהב והופך את הדיון העניני לקריקטורה Yנטית או איזה טיש לובביצ'י כמו ההשוואה שאתה עושה בין שדמי לאיינשטיין. משה: בכדי ליצור פיסיקה חדשה שיש בה עיקרון קביעות מהירות האור ועיקרון היחסות הצביע אינשטיין בשנת 1905 על ההנחה הסמויה של הפיסיקה והוא כינה זאת "טראנספורמציות גלילאו". כשעבר לטרנספורמציות לורנץ הוא קיבל כי האורך , המסה, והזמן הם גדלים יחסיים. ההנחה הסמויה של המתמטיקה הרגילה היא שהקו מורכב מרצף של נקודות. החבירה בין הרצף לבדידיות בוראת את המספרים האורגנים, תפיסה חדשה של תורת הקבוצות ומושג הפונקציה. שלשת אלו ( המספר, הקבוצה, והפונקציה ) הם כידוע לך מטבע עובר לסוחר בכל 61 ענפי המתמטיקה השונים. האיל האלמוני השני: "61" נא לדייק |
|
||||
|
||||
האיל האלמוני הראשון : מה שאתה עושה לדורון זה מאד לא יפה ולא מכובד. האיש השקיע הרבה בתאוריה שלו ומנסה להציג אותה בצורה מכובדת עם מי שמעוניין ברצינות להשקיע ולהבין אותו. פתאום אתה מופיע בתור גרופי משולהב והופך את הדיון העניני לקריקטורה Yנטית או איזה טיש לובביצ'י כמו ההשוואה שאתה עושה בין שדמי לאיינשטיין. משה: בכדי ליצור פיסיקה חדשה שיש בה עיקרון קביעות מהירות האור ועיקרון היחסות הצביע אינשטיין בשנת 1905 על ההנחה הסמויה של הפיסיקה והוא כינה זאת "טראנספורמציות גלילאו". כשעבר לטרנספורמציות לורנץ הוא קיבל כי האורך , המסה, והזמן הם גדלים יחסיים. ההנחה הסמויה של המתמטיקה הרגילה היא שהקו מורכב מרצף של נקודות. החבירה בין הרצף לבדידיות בוראת את המספרים האורגנים, תפיסה חדשה של תורת הקבוצות ומושג הפונקציה. שלשת אלו ( המספר, הקבוצה, והפונקציה ) הם כידוע לך מטבע עובר לסוחר בכל 61 ענפי המתמטיקה השונים. האיל האלמוני השני: "61" נא לדייק האייל הצעיר: טוב, זה מה שהוא שמע ממורו ורבו, מפי הגבורה, דברי אלוהים חיים. למה להתווכח? |
|
||||
|
||||
מגיבים קודמים: ... האייל הקפדן: מספיק. הערתי למשה ונראה לי שהוא ירד לסוף דעתי. אני מציע שנמשיך לכבד את הדיון הזה |
|
||||
|
||||
למה נראה לך שהוא ירד לסוף דעתך? מהדיאלוג (אותו תוכל לקרוא בעשרות תגובות שונות...) נראה שהוא בכלל *לא שם לב שאמרת משהו*, אלא המשיך להסביר למה מר שדמי הוא אחיו האובד של אינשטיין, ומה ההנחות הסמויות (?) והמוטעות (??) של המתמטיקאים באשר הם. הוא אפילו טרח לחזור על האמירה של שדמי, לפיה יש 61 ענפים במתמטיקה. |
|
||||
|
||||
בכינוס בנושא "אחדות המתמטיקה " שהחל בדיוק לפני שנתיים באוניברסיטת הארוורד אמר מיכאל אטיה ( מדלית פילדס, מדלית אבל ) כי אנו מצפים היום לניוטון חדש שיפצח את מהות האניגמה שבין המתמטיקה לפיסיקה ( הבעיה השישית של הילברט) כדי ליצור פיסיקה חדשה שיש בה עיקרון קביעות מהירות האור ועיקרון היחסות הצביע אינשטיין בשנת 1905 על ההנחה הסמויה של הפיסיקה והוא כינה זאת "טראנספורמציות גלילאו". כשעבר לטרנספורמציות לורנץ הוא קיבל כי האורך , המסה, והזמן הם גדלים יחסיים. ההנחה הסמויה של המתמטיקה הרגילה היא שהקו מורכב מרצף של נקודות. החבירה בין הרצף לבדידיות בוראת את המספרים האורגנים, תפיסה חדשה של תורת הקבוצות ומושג הפונקציה. אם במקרה, מסתובב היום ביננו, אותו ניוטון נכסף, הרי תסכים איתי אלון עמית, כי הוא ודאי אחד מאלו אותן הכללת וכינית בשם : "טרחנים כפייתיים במתמטיקה" משה |
|
||||
|
||||
האם ניאו-ניוטון יתעקש לטעון שכל המתמטיקה עד ימיו מקורה בטעות? האם ניאו-ניוטון יתעקש שהממסד המתמטי מתעלם ממנו כי הוא מפחד מהרס יסודות המתמטיקה? האם ניאו-ניוטון יהיה בטוח שלתיאוריה המתמטית שלו יש השלכות פילוסופיות הרות גורל? האם ניאו-ניוטון לא יבין מה רוצים ממנו כשמצביעים על טעויות שלו? האם ניאו-ניוטון יתנסח במעומעם? האם ניאו-ניוטון יצפה להררי תהילה (כסף) ופרסום בזכות גילויו המתמטיים? כל אלה מאפיינים של טרחנים כפיתיים שאלון הציג במאמר ובתגובות שלו. לא כל מי שמחדש תיאוריות מתמטיות הוא טרחן כפייתי: אוילר, קנטור, טיורינג, לובצ'בסקי, ריימן, המתמטיקאים שפיתחו את הגיאומטריה הפרויקטיבית וגם קונווי שכולם אוהבים להזכיר פה פיתחו כולם תיאוריות מתמטיות חדשות ונפלאות. הם לא ענו על ההגדרה של טרחן כפייתי. אגב, אותו ניאו-ניוטון יצטרך לעסוק ב*פיזיקה*, ולא במתמטיקה. |
|
||||
|
||||
ניוטון עסק גם במתמטיקה, וסטודנטים למדעים סובלים עד היום בשנה הראשונה שלהם מההמצאות המטורפות שלו (בגרסה שאמנם רוככה ושופרה רבות על ידי אחרים). השם של ניוטון צץ בדיון הזה בגלל הקישור שהוא ביצע בין מתמטיקה ופיזיקה (להבדיל מאיינשטיין שאני לא בטוח כמה חשובה הייתה תרומתו למתמטיקה, אבל די ברור שהיא הייתה פחותה בסדרי גודל מתרומתו לפיזיקה). |
|
||||
|
||||
מצטער לא הבנתי אותך אייל צעיר, האם מיכאל אטיה הוא טרחן כפייתי במתמטיקה אם הוא הרצה בפני 200 מתמטיקאים מכל העולם על הצורך שיש היום בשינוי הפרדיגמה של שפת המתמטיקה באמצעות פיצוח מהות הקשר בין פיסיקה למתמטיקה שאלה מרתקת ביותר שאין לה תשובה כבר אלפי שנים . |
|
||||
|
||||
לא. או לפחות "לא בהכרח". טרחנות כפייתית היא לא פונקציה של עמדות. טרחנות כפייתית היא עניין של אופי. לכן טרחנות כפייתית קיימת גם בתחומים אחרים, ולא רק במתמטיקה. לגבי השאלה של אטיה: גם השאלה לא הייתה קיימת אלפי שנים. מאז שניוטון החל לנסח את טענותיו הפיזיקליות (הלא-טריוויאליות 1) בניסוח מתמטי, כל הפיזיקה מתנסחת באופן מתמטי. תורת היחסות מתנסחת באופן מתמטי, תורת הקוונטים מתנסחת באופן מתמטי... בקיצור, אנחנו יודעים לא מעט על הקשר בין מתמטיקה ופיזיקה, וזה היה המצב מאז שהאנושות בכלל התחילה _לחשוב_ על פיזיקה באופן מתמטי. אם הכוונה היא לאקסיומטיזציה של הפיזיקה, המכשול הוא לא במתמטיקה. אנחנו לא יודעים מספיק על הפיזיקה. המחקר בכיוון זה צריך להיות אמפירי. המתמטיקאים יכולים לבמשיך לעבוד בינתיים בשקט. אגב, הגישה שלך ושל דורון עוסקת בקשר בין מתמטיקה ופיזיקה? 1 בעיות תנועה פשוטות, למשל, מדגימות שימוש במתמטיקה לצורך הסקת מסקנות "פיזיקליות". אך הפיזיקה של בעיות אלה היא טריוויאלית. |
|
||||
|
||||
נדמה לי שבמצב העניינים הנוכחי, זה לא נכון ש"המתמטיקאים יכולים להמשיך לעבוד בשקט". יש שאלות מהותיות על מבנה היקום (באיזו יריעה מדובר; אצל ניוטון היה מדובר ב'מרחב אוקלידי', עם אורך-רוחב-גובה בלתי תלויים, מה שהמתמטיקאים קוראים R בשלישית; אצל (מינקובסקי ו)איינשטיין עברו לדבר על יריעה תלת-ממדית הכוללת ממדי זמן ומרחב, תחת האילוץ t^2-(x^2+y^2+z^2)=1. אם רוצים לאחד את מכניקת הקוונטים עם הגרביטציה, מתברר שזה פשוט מדי), שהפתרון להן צריך לבוא ממיון של יריעות אלגבריות עם תכונות מסויימות. האינטואיציה הפיזיקלית אמורה לתרום את האקסיומות שהמרחב יקיים, והמתמטיקה את המיון של מרחבים שעונים על כל הדרישות. בהמשך תבוא מתמטיקה שלמיטב ידיעתי עדיין לא קיימת, ותצליח לחשב עבור כל מועמד את 19 הקבועים היסודיים שבאים איתו (מסת האלקטרון, למשל). אז יבוא תורם של הנסיונאים שיצטרכו לבחור מהקטלוג את היקום האמיתי. |
|
||||
|
||||
אתה יכול להסביר קצת מה פירוש "מיון של יריעות אלגבריות עם תכונות מסוימות"? |
|
||||
|
||||
זה המשפט היחיד מכל התגובה שאני באמת מבין... הכוונה היא למצוא (עד כדי 'שקילות', שהיא משהו שאתה יכול להגדיר כרצונך) את כל היריעות האלגבריות שמקיימות תכונות מסויימות. כדוגמא ל"תכונות מסויימות", יריעות Calabi-Yau שמופיעות בתורת המיתרים הן יריעות רימן קומפקטיות שנושאות תבנית סימפלקטית תואמת, ומחלקת Chern הראשונה שלהן מתאפסת. |
|
||||
|
||||
הכל ברור, חוץ ממילה אחת: מה זו "יריעה"? |
|
||||
|
||||
יריעה (manifold) היא מרחב טופולוגי שנראה לוקלית כמו R^n. דוגמא טריויאלית: R^n דוגמא פחות טריויאלית: הספרה ב-R^n היא יריעה קומפקטית n-1 מימדית. דוגמא עוד פחות טריויאלית: (פני השטח של) הטורוס הוא יריעה קומפקטית ממימד 2. דוגמא לגמרי לא טריויאלית: (פני השטח של) בקבוק קליין הוא יריעה קומפקטית דו-מימדית שאינה ניתנת לשיכון ב-R^3. |
|
||||
|
||||
מה הכוונה המדוייקת ב"נראה לוקלית כמו"? |
|
||||
|
||||
לכל נקודה יש סביבה כך ש-. (זה "לוקלית". במקרה שלנו, לכל נקודה יש סביבה הומיאומורפית למרחב אוקלידי.) זה סוג פשוט (או מסובך, תלוי בהשקפה) של יריעות. במקרים אחרים, דורשים גם משהו מהפונקציות ש"תופרות" את הסביבות הללו אחת לשניה (ההרכבה של R^n->יריעה->R^n שהולכת דרך סביבה אחת וחוזרת דרך אחרת, חופפת לה); אפשר לדרוש שתהיינה גזירות n פעמים, אנליטיות-ממשיות, אנליטיות-מרוכבות, לינאריות-למקוטעין, ועוד. כל בחירה כזו יוצרת תורה אחרת של יריעות, והתורות הללו שונות למדי זו מזו. אגב, עוזי דיבר על "יריעה אלגברית" שזה משהו אחר קצת: Algebraic variety. זו יריעה המוגדרת כאוסף האפסים של קבוצת פולינומים, לא בהכרח מעל הממשיים (או המרוכבים). |
|
||||
|
||||
"יריעה אלגברית" נשמע מסקרן. באיזה ספרים וקורסים שסטודנט לתואר ראשון יכול לא להימלט מהם בצרחות אחרי שתי דקות אפשר למצוא את זה? זה קשור לטופולוגיה אלגברית? |
|
||||
|
||||
הכל קשור להכל, אבל לא - יריעות אלגבריות הן נושא המחקר העיקרי ב*גיאומטריה* אלגברית, דווקא. יצא לזה מוניטין של תחום קשה מאוד, ואי-אפשר לומר שזה לגמרי בלתי-מוצדק; גיאומטריה אלגברית מודרנית דורשת שליטה בכמות עצומה של אלגברה קומוטטיבית1, השפה של סכמות, קטגוריות, טופולוגיה אלגברית, תורת המספרים ועוד. אני לא יודע לגבי הטכניון, אבל באוניברסיטה העברית לא ידוע לי שיש קורסים על גיאומטריה אלגברית לתואר ראשון. גם ספרים להדיוטות (=בוגרי תואר ראשון) אין ממש בשפע; יש ספר שאני מכיר של Keith Kendig, אבל בעיני הוא ממש לא מלהיב. אני חושב שהספר שהכי כדאי להתחיל ממנו הוא דווקא Rational Points on Elliptic Curves של סילברמן וטייט; הוא לא ממש על גיאומטריה אלגברית (אלא על עקומים אליפטיים ותורת המספרים), אבל הוא מסביר היטב את הקשר בין גיאומטריה ואלגברה שיש בתחום הזה, והוא באמת ספר כיפי. אומרים ש-Fulton הוא טוב למתחילים, ואולי גם Shafarevich אבל עברו שנים מאז שעיינתי בו ואני לא זוכר כמה הוא נגיש. אם אתה כן מעוניין דווקא להימלט בצרחות, אתה יכול לנסות את גריפית'ס-האריס או את Hartshorne או את ממפורד. 1 לאנג כתב פעם "It is possible to write endlessly about commutative algebra", ואני די מאמין לו (גם בגלל שהוא גרפומן לא קטן). |
|
||||
|
||||
גיאומטריה אלגברית זה Algebraic Geometry לעומת זאת Geometric Algebra זה אלגברה גיאומטרית? ואחר כך אתם מתפלאים שאף אחד לא מבין את הקהילה שלכם? |
|
||||
|
||||
Geometric Algebra זה שם של ספר (נהדר) של ארטין, אבל זה לא הפך להיות שם של "תחום". מי מתפלא? :-) |
|
||||
|
||||
עכשיו בדקתי1, מתברר שיש שני תחומים דומים עם השם Geometric Algebra (אחד באמת ספר של ארטין שלא הכרתי עד עכשיו. השני פותח על ידי הסטניס ודווקא די פופולרי במקומות מסויימים). שניהם לא Algebric Geometry. בעצם, זאת הבעיה שלכם. אם הייתם ממציאים שמות קצת יותר מקוריים, לא היתה לכם בעיה. אני מציע, בתור התחלה, תפסיקו לקרוא לקבוצה קבוצה (במקום זה תקראו לה "קבוצית"), ולרצף "רצף" (אני מציע "ריצופית"). ואז פתרנו את כל הבעיה של דורון שדמי (טוב, צריך להחליף גם את המושגים קו ונקודה, אבל העיקרון ברור וחסכוני). 1 למשל, http://66.102.7.104/search?q=cache:1nzbh6GZvh0J:www.... |
|
||||
|
||||
כאשר לא יודעים את ההבדל בין מונחים למושגים, הכול מתבלבל. |
|
||||
|
||||
כלום לא ברור, חוץ ממלה אחת - "יריעה"...:) בכל אופן, תודה. |
|
||||
|
||||
יהיה נחמד אם לא תפנה אלי כשאתה מגיב למישהו אחר. (ולא, אני לא אסכים איתך.) |
|
||||
|
||||
ההנחות של המתמטיקה לא סמויות, ואפילו די גלויות לכל: קוראים להן ZF, ואפילו יש כאלו שבגלוי לא מקבלים אותן. ב-ZF לא אומרים כלום על מה זה קו וממה הוא מורכב. אולי כדאי להצביע על הבחנה טריוויאלית בין איינשטיין לשדמי: איינשטיין עסק בפיזיקה, והציע פתרון לבעיה בלתי פתירה עד אותה העת (ככל שידוע לי - התלות של הכוח המגנטי במהירות), תוך התבססות על ממצאים ניסיוניים מאותה התקופה (ניסוי מייכלסון-מורלי). שדמי עוסק במתמטיקה. |
|
||||
|
||||
שדמי עוסק ב(סוג של) מתמטיקה. |
|
||||
|
||||
אלון :יהיה נחמד אם לא תפנה אלי כשאתה מגיב למישהו אחר. (ולא, אני לא אסכים איתך.) משה : אתה צודק לחלוטין ואני מתנצל בפניך. אני ממש ממש לא אוהב את המונח שיצרת במו ידיך "טרחנים כפיתיים במתמטיקה" . זהו מסוג השמות שיוצרים סטיגמה כוללת ושלילית ורחבה על קהל אחר. ( שיש בינהם גם מטורפים אמיתיים) ללא יכולת התיחסות ספציפית באדם מסוים ( הא , ההוא הוא טרחן כפייתי צריך להזהר ממנו, אין מה לבזבז עליו את הזמן , מותר גם להשתמש בשם זה בדמותו הנפלאה והאהובה של מיכה פרלס ( מופיע באחד התגובות כאן) לפגוע שאנשים אנונינים שהוא נפגש איתם מרצונו כי הוא טוב לב ואני מתכוון לספר לו ששמו מופיע באתר שלך בהקשר כזה ) האם בעיית 4 הצבעים נפתרה בשנת 1977 או 1976 (משום מה היה נדמה לי 1976 וכנראה שאני טועה בזה ) אני אסביר בהמשך איך פתרון הבעיה באמצעות מחשב קשור ליצירת מתמטיקה לא אוקלידית. אגב, אני לימדתי את דורון שיש 61 תחומים במתמטיקה [ לפחות שלמדתי BA במתמטיקה ] האם לרשום את כל הרשימה ( לוגיקה, חבורות, טופולוגיה ...) דורון אגב הוא אוטודידקט במתמטיקה והוא על פי הבנתי נתן את התשובה לשאלה ששאל מיכאל אטיה בכינוס על אחדות המתמטיקה ( אני הייתי שם ושמעתי זאת באופן אישי וגם שוחחתי עם אטיה לאחר מכן) כך שמוטל עליך לדעתי לקבל כעת החלטה ברורה ביחס למתמטיקה שיצר דורון שדמי. |
|
||||
|
||||
האתר הזה עובד כך: כשאתה רוצה להגיב לתגובה מסויימת, לחץ על הקישור "הגב לתגובה זו" המופיע *מתחת לידיעה אליה אתה רוצה להגיב*. זה יאפשר לך: 1. לא לחזור ולצטט את החלק הקודם של השיחה, משל היה זה מחזה. 2. לא להתנצל על משהו תוך כדי שאתה חוזר ועושה את אותו הדבר בדיוק. זה נראה, אני חייב להגיד לך, קצת אידיוטי. 3. להבטיח שהאדם אליו את שולח את התנצלויותיך ואיומיך (באותה תגובה!) ידע לפחות שעשית זאת. כשאתה מגיב למישהו אחר, רק מי שעוקב אחרי כל התגובות ישים לב אליך. המונח "טרחנים כפייתיים במתמטיקה" הוא תרגום (שלי) למונח Mathematical Cranks, הנפוץ למדי בחוגים מתמטיים. בין המשתמשים בביטוי ישנם גם כאלה העומדים במשימה הנכבדה של להבחין בין יצירתם המתמטית של איינשטיין ואוילר לזו של ג'יימס האריס או דורון שדמי; יכולת ההתייחסות שלהם לאדם ספציפי, מסתבר, לא נפגעה כהוא זה מעצם השימוש שלהם בביטוי Crank בהקשרים המתאימים. המשפט "מותר גם להשתמש בשם זה בדמותו הנפלאה והאהובה של מיכה פרלס ( מופיע באחד התגובות כאן) לפגוע שאנשים אנונינים שהוא נפגש איתם מרצונו כי הוא טוב לב" כתוב בדיאלקט דמוי-עברית שאינו מוכר לי. תוכל לתרגם אותו למעני? אני מתקשה לתאר את שלל התחושות שעורר בי האיום "ואני מתכוון לספר לו ששמו מופיע באתר שלך בהקשר כזה". האתר הזה אינו שלי, מר קליין, ואם אתה מתכוון לספר שקרים למיכה פרלס, שיהיה לך בהצלחה. מסור לו גם ד"ש ממני, בהזדמנות. |
|
||||
|
||||
אלון יקר, 1) האם הבחנת סופית בין היצירה של אינשטיין לזו של שדמי ? 2) האם אביך התראין בכתב העת של מחשבות מספר 3 שערך צבי ינאי אם אפגש עם מיכה פרלס , אמסור לו בחיבה ד"ש ממך. אנא, בוא ננהל מרגע זה ואילך, אך ורק דיון מקצועי ופתוח על יסודות של שפת המתמטיקה מבלי לפגוע אישית אחד בשני. בהערכה משה |
|
||||
|
||||
1) כן. 2) כן. אחרי הנימה הדוחה של תגובתך הקודמת, התנצלות היתה מתקבלת הרבה יותר בברכה מאשר חיבה מזוייפת ובקשה מתנשאת *ממני* לנהל דיון בלי לפגוע. כפי שציינתי, אין לי כל רצון להיכנס עימך או עם דורון בדיון על יסודות של שפת המתמטיקה, אני יודע בדיוק מה יצא מדיון כזה, ויש פה אחרים - אופטימיים ומוכשרים ממני - העושים זאת היטב. |
|
||||
|
||||
מר עמית הנכבד מאד, כהרגלך אתה מסלף עובדות, מכופף ראיות ובודה מליבך הזיות חסרות אחיזה במציאות. הקישור נקרא "הגב על הערה זו" ולא מה שטענת. בחוצפתך האינסופית עוד העזת להכניס את המלל המזוייף בתוך מרכאות! וכאילו לא די בכך, השתמשת במרכאות מהזן הכפול!! (כידוע אלה נוטות להשאיר אצל הקורא התמים את הרושם שמדובר בטכסט שהועתק כפי שהוא מהמקור, ולא היא). המשחק שאתה משחק, מר עמית, שקוף וגלוי לעיני קומץ איילים מובחר וחד מבט: אמנם לא קל להיווכח בזיוף בקריאה ראשונה שכן הטכסט המדובר אינו מופיע אלא בכשלוש מאות עשרים אלף ומשהו הודעות, אבל סופם של שרלטנים מסוגך להתפס במוקדם או במאוחר, וכשהאמת תצא לאור תצטרך לתת לקהל הקוראים הרחב דין וחשבון על מעשיך הנלוזים, ותוקע אל עמוד הקלון האיילי לדראון עולם. כל זאת מאה שנה בדיוק אחרי פרסום המאמרים הידועים של איינשטיין, מאמרים שלא הכילו מרכאות כלל. בתוקף תפקידי כממונה המקומי על האמת, הצדק, היושר וההגינות אני תובע שתתנצל מיד על הסילוף הזדוני. יש דין ויש דיין, מר עמית, לשקר אין רגליים (כידוע המאניאק לא זקוק להן, כבר מזמן הוא נוסע במכונית מרוץ, אבל לא ארחיב כאן) וכידוע אפשר לשקר לכל האנשים חלק מהזמן ולחלק מהאנשים כל הזמן, אבל בלתי אפשרי לעשות זאת לכולם ולתמיד, לפחות כל עוד השכ"ג עומד על המשמר (או שוכב על המשמרי ,אני תמיד מתבלבל). |
|
||||
|
||||
לפחות התרגום האנגלי של אחד המאמרים (http://www.fourmilab.ch/etexts/einstein/specrel/www/) מכיל מרכאות. |
|
||||
|
||||
אני התכוונתי למאמרים שפורסמו במדור המכתבים למערכת של המקומון ''ציריך שלנו'' ואשר עסקו ברעש שפועלי הזבל עושים כשהם מגלגלים את הפחים אל המשאית. לא ידעתי שאיינשטיין פרסם מאמרים גם בפיזיקה. תודה. |
|
||||
|
||||
איך הוא מחליף הילוכים במכונית מרוץ בלי רגליים? |
|
||||
|
||||
|
||||
|
||||
ואללה. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |