בתשובה לגדי אלכסנדרוביץ', 26/06/07 18:14
שלושה ספרים 449217
קיום שורש נובע ישירות מרציפות של x^2, לא?
שלושה ספרים 449252
לא שאני יודע. אפשר להגדיר את x^2 כפונקציה על הרציונליים בלבד ולהוכיח שהיא רציפה עליהם, ועדיין לא ינבע מכך שיש שורש למספרים חיוביים שאינם ריבועים.

אולי התכוונת לפונקציה x^1/2? אבל במקרה הזה, הרציפות שלה נובעת מקיום שורש, לא ההפך.
שלושה ספרים 449262
''עדיין לא ינבע מכך שיש שורש למספרים חיוביים שאינם ריבועים'' - ינבע ממשפט ערך הביניים, ומכך שכל מספר חיובי שאיננו ריבוע של שלם נמצא בין שני חיוביים שהינם ריבועים של שלמים.
הו, רציונליים אמרת, לא ממשיים. 449263
במקרה של הרציונליים, אם כך, משפט ערך הביניים לא מתקיים. לא כך?
הו, רציונליים אמרת, לא ממשיים. 449268
תלוי. ''תכונת ערך הביניים'', שהיא תכונה טופולוגית כללית, אומרת שתמונת כל פונקציה רציפה מתת-קבוצה אל הממשיים, היא קטע, ואפשר להראות שהיא מתקיימת אם רק אם תת-הקבוצה קשירה. אז אם מסתכלים על הרציונליים כעל תת-מרחב (טופולוגי) של הממשיים - אז לא, משפט ערך הביניים לא מתקיים (כי היא אינה קבוצה קשירה).

אבל עבור אותה טופולוגיה, ההכללה ה-''טבעית'' ''התמונה הרציפה של כל קבוצה פתוחה של מספרים רציונליים, כוללת את כל המספרים הרציונליים בין החסם העליון שלה, לחסם התחתון שלה'' כן נכונה (לפחות לפי סקיצת ההוכחה שיש לי בראש, לא ניסיתי ממש לכתוב אותה).
הו, רציונליים אמרת, לא ממשיים. 449277
ואיך בדיוק יכולה להיות תמונה רציפה של מספרים רציונליים?
הו, רציונליים אמרת, לא ממשיים. 449278
הרציונליים הם מרחב מטרי לכל דבר. אין בעיה להגדיר עליהם פונקציות רציפות ביחס למטריקה שלהם. רק כשאתה מכניס את הממשיים לעניין כל הטופולוגיה מתחרבשת. למשל - כשהיינו רק ברציונליים, אז אוסף כל הרציונליים היה קבוצה פתוחה וסגורה, מן הסתם. כשאתה מביט עליו כעל תת קבוצה של הממשיים, הוא לא קבוצה פתוחה (כי בכל סביבה של רציונלי יש אי רציונלי), והוא לא קבוצה סגורה (כי יש סדרות רציונליים שמתכנסות לאי רציונלי).
הו, רציונליים אמרת, לא ממשיים. 449282
זה נשמע חביב - "כשהיינו רק ברציונליים"... הו הימים היפים!
הו, רציונליים אמרת, לא ממשיים. 449292
עוצמת הרציונליים כולם אלף-אפס, עוצמת כל תת-קטע של הישר הממשי כעוצמת הממשיים כולם - טריוויאלי לגמרי לכן שאף פונקציה מהרציונליים לממשיים לא יכולה להיות על, ולא לכך התכוונתי.

חוץ מזה, לא הבנתי אותך, ונדמה לי שלא הבנת אותי.
הו, רציונליים אמרת, לא ממשיים. 449314
העניין הוא שלא ברור על מה אתה מדבר ב"משפט ערך הביניים" ומהו "המקרה של הרציונליים" (פונקציות מ-Q ל-Q?) בהכללה שהוא דיבר עליה הוא ניסה להציע מקבילה של משפט ערך הביניים למקרה של הרציונליים - ההכללה הכי טבעית שאפשר לדמיין במקרה הזה, לדעתי.
הו, רציונליים אמרת, לא ממשיים. 449352
אני חושב על פונקציות מהרציונלים לרציונלים. משפט ערך הביניים לא מתקיים שם, לפי הדוגמה הנגדית שמספקת הפונקציה x^2, שעדיין רציפה, אבל כמובן איננה על (החלק האי-שלילי של הישר).
הו, רציונליים אמרת, לא ממשיים. 449371
הממ, צודק. אין מקור ל-‏2.
שלושה ספרים 449265
עזוב רציפות, כדי לדבר עליה כעל פונקציה מעל הממשיים, צריכים, ובכן, מספרים ממשיים ואם יש לך אותם (אקסיומטית: שדה \סגור ארכימדי וגו'), שאלת הקיום טריוויאלית.

לכן היא (שאלת הקיום של האי-רציונליים) דווקא מעניינת יותר (היסטורית, אנקדוטלית, פילוסופית - לא דווקא מתמטית) בהקשר גיאומטרי מאשר אנליטי.

ואם את קיומם של מספרים אי-רציונליים אלגבריים קל יחסית לקבל (כי קל לבנות קטועים שאורכם אי-רציונלי, בעזרת מספרים שלמים, וגם כי עוצמתם בת-מניה ואיך צורך ב-"אינסוף אקטואלי"), קיומם של מספרים אי-רציונליים טרנסצדנטיים הוא כבר בעייתי הרבה יותר. אתה מציע לעלות גם את הנושא הזה בתיכון?
שלושה ספרים 449273
מישהו אמר משהו על להראות את זה בתיכון? זו בורות מבורכת.

לטעמי החלק הכי מעניין בשאלת הקיום של האי רציונליים היא בבנייה הפורמלית של הממשיים, למרות שלכאורה זה overkill אם רוצים לטפל רק באי רציונליים אלגבריים.
שלושה ספרים 449303
אז עדיף לא לבנות ממשיים ולהשאר רק עם רציוליים וכ'ו?
שלושה ספרים 449315
ממש לא. למה?
שלושה ספרים 449302
ויש? שורש למיספרים שהם לא ריבועיים?
שלושה ספרים 449316
כן.

(כלומר, אין שורש רציונלי, אבל אפשר להראות בניות פורמליות של שדות שמכילים את הרציונליים כתת שדה, ובהם יש שורש לכל מספר חיובי).

חזרה לעמוד הראשי המאמר המלא

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים