|
||||
|
||||
אני מתנצל מראש בלב השיחה בינכם, על הטרחנות הריגעית שלי..בנושא הקו והנקודה על פי הספר היסודות של הגאומטריה, של הילברט: Axioms כלומר, על פי הילברט הקו מכיל ! את הנקודות שיש בו
Axioms of Incidence Postulate I.1. For every two points A, B there exists a line a that contains each of the points A, B. |
|
||||
|
||||
והנקודה מכילה את הישרים שעוברים דרכה, אאל''ט. |
|
||||
|
||||
הי אייל, האם זוהי הפרשנות שלך או שזה נכתב במפורש על ידי הילברט? תודה משה |
|
||||
|
||||
למען האמת, מעולם לא קראתי את הילברט. קראתי רק על הילברט. המשך התגובה אכן מבוסס על ידע. באופן כללי, אני מכיר שתי דרכים להתייחס לישרים ולנקודות במישור האוקלידי (ובמישור הכללי): הראשונה, ובה נתקלתי הכי הרבה, מתייחסת לשני המושגים כמושגי-יסוד, כך שישר מסוים ונקודה מסוימת, מקיימים או לא מקיימים ביניהם יחס חילה/חלות (אני לא בטוח איך אומרים את המילה הזאת). כמובן, שלכל ישר ניתן להתאים את קבוצת הנקודות שחלות בו, ולכל נקודה אפשר להתאים את קבוצת הישרים שחלים בה 1. גישה שנייה, נדירה יותר, היא הגישה ה"חסכנית". היא אומרת, שמאחר ששורה מגדירה ישר באופן חד-משמעי, ואלומה מגדירה נקודה באופן חד-משמעי, אפשר להתייחס מלכתחילה לישרים ולנקודות כקבוצות. פעולה כזאת לא מוספיה או גורעת כלום ממערכת האקסיומות. זו *רק* צורת רישום. כרגע חשבתי גם על מצב שבו מגדירים ישר כקבוצת נקודות: גרף הפונקציה f(x)=x הוא ישר, אך הוא מוגדר (כמו כל גרף של פונקציה) כקבוצת הנקודות שהקואורדינטות שלה מקיימות את הפונקציה. אם אתם רוצים לסקול את דקארט על אי-הבנה של מושג הרצף, אתם מוזמנים. 1 מוקדם יותר בדיון, השתמשתי במילים "שורה" ו"אלומה" כדי להגדיר את הקבוצות האלה. שתי המילים שאולות מתחום הגיאומטריה הפרוייקטיבית. |
|
||||
|
||||
הי אייל תודה על תגובתך, הנה כך, סיים הילברט את ההרצאה המפורסמת שלו בפריס: The organic unity of mathematics is inherent in the nature of this science, for mathematics is the foundation of all exact knowledge of natural phenomena. That it may completely fulfil this high mission, may the new century bring it gifted masters and many zealous and enthusiastic disciples! לטעמי, זה יפה מאד.--------------------------------------------------- האם תוכל לקרוא בהפניה ליסודות הגאומטריה של הילברט איזו תמונה נוצרת על פי הילברט לגבי היחסים בין הקו והנקודה. בכל אופן כדאי להשוות גם לעמוד הראשון בספר היסודות לי נדמה, שאוקלידס השאיר את היחסים במובן מסויים פתוחים והילברט הוא זה שקיבע שהקו בעצם מכיל ומורכב מנקודות. לדקארט, אולי, עוד נגיע בהמשך. אשמח לשמוע את דעתך. |
|
||||
|
||||
למען האמת, לא רלוונטי עבורי איזו תמונה ראה הילברט במוחו של יחסי הנקודה והישר. זו סוגיה ספק פילוסופית, ספק פרקטית. לא מתמטית. מה שעבורי רלוונטי היא העובדה שניתן לעסוק באותה גיאומטריה, באופן פורמלי, _עם או בלי_ יצירת קשר בין יחס החילה הגיאומטרי ליחס השייכות מתורת הקבוצות. לכן, שאלת יחסיהם ה"אמיתיים" בין הישרים לנקודות לא יכולה להיות נקודת התורפה של השיטה הדדוקטיבית. |
|
||||
|
||||
''שאלת יחסיהם ה''אמיתיים'' בין הישרים לנקודות לא יכולה להיות נקודת התורפה של השיטה הדדוקטיבית'' סבבה |
|
||||
|
||||
אני יודע שאני אתחרט על זה, אבל הבהרה: זה אחד ההבדלים המרכזיים בין מי שכותב מתמטיקה למי שכותב פסאודו-מתמטיקה. גם מי שכותב מתמטיקה משתמש במונחי יסוד שאותם הוא לא מגדיר, ובאקסיומות שאותן הוא לא מוכיח. ההבדל הוא שהמתמטיקאי *מודע* לזה. אם תשים לב, בראש הדף יש חלק חשוב שנקרא "Undefined Terms", ושם מופיעה רשימה של כל מושגי היסוד שאותם לא מגדירים. בין היתר, הגיאומטריה דורשת קיום איזשהו יחס בין נקודות לישרים (אותו היחס שבאופן אינטואיטבי אפשר להתייחס אליו כ"הישר עובר דרך הנקודה" או "הנקודה נמצאת על הישר"). Hilbert מגדיר יחס כזה, וקורא לו "contains". זה לא אומר שהקו מכיל (!) את הנקודות שיש בו בשום מובן מתמטי. לאותו יחס בין נקודות לישרים אפשר היה גם לקרוא "eats" או "loves", והמתמטיקה הייתה נשארת זהה לחלוטין. האם אז היית מפתח תיאוריה שמדברת על המתמטיקה במונחים של יחסי אהבה בין נקודות לישרים? לשם השוואה, אצל דורון שדמי, למרות בקשות חוזרות ונשנות מצד חברי האייל, לא מצאתי בשום מקום רשימה של מושגי יסוד ואקסיומות (בלי הסברים ארוכים שקשה בהם למצוא את הידיים והרגליים, בלי הפניות לקבצי pdf עלומים, פשוט רשימה ממוספרת, שאחרי כל מספר יש מילה אחת או שתיים - מושג שבו דורון משתמש בלי להגדיר אותו) |
|
||||
|
||||
"לשם השוואה, אצל דורון שדמי, למרות בקשות חוזרות ונשנות מצד חברי האייל, לא מצאתי בשום מקום רשימה של מושגי יסוד ואקסיומות (בלי הסברים ארוכים שקשה בהם למצוא את הידיים והרגליים, בלי הפניות לקבצי pdf עלומים, פשוט רשימה ממוספרת, שאחרי כל מספר יש מילה אחת או שתיים - מושג שבו דורון משתמש בלי להגדיר אותו)" הסיבה מאוד פשוטה אייל אלמוני. המערכת שלי מבוססת תובנה, כאשר ההגדרות אינן אלא אמצעי טכני לייצוג התובנה, תוך הקפדה יתירה של הייצוג המיטבי של התובנה. משמעות הדבר היא, שכל מושג צריך להיות מובן עד תומו *טרם* השימוש בו. דרישה *ריגורוזית* זו מאפשרת קיומן של מערכות מכוננות תובנה, ולא מכוננת הגדרה-בלבד, כי בבסיס מערכות מכוננות הגדרה-בלבד לא קיימת שום תובנה מכוננת. התובנה המכוננת של מושג הקו ומושג הנקודה, מאפשרת הבחנה קטגורית ברורה לחלוטין ביניהם כבר ברמה הלוגית. מבחינה לוגית ברור לחלוטין שקו יכול להתקיים סימולטנית בשני מצבים שונים כגון: פנים AND חוץ, מעלה AND מטה, שמאל AND ימין, אמת AND שקר וכו'. מבחינה לוגית ברור לחלוטין שנקודה אינה יכולה להתקיים סימולטנית בשני מצבים שונים, ולכן התנאי-הלוגי ביניהם הוא XOR, לדוגמא: פנים XOR חוץ, מעלה XOR מטה, שמאל XOR ימין, אמת XOR שקר וכו'. בקיצור, תנאי-האמת של קו ונקודה שונים בתכלית זה מזה, ומאפשרים הגדרת מרחב גישור ביניהם תוך שימוש בלוגיקה משלימה, החוקרת את מצבי המעבר הסדורים המתקיימים בין תנאי-האמת 1=(אמת AND שקר) לתנאי-האמת 1=(אמת XOR שקר). השיטה מכוננת-ההגדרה המקובלת כיום מוגבלת לתנאי-האמת 1=(אמת XOR שקר) בלבד ולכן מרחב הגישור הנחקר ע"י המתמטיקה-המונדית הוא מחוץ לתחום החקירה שלה. אינני מבין אייל-אלמוני, מדוע אתה משבח את שיטת ההגדרות המכאניות המשוללות תובנה-מכוננת? הריי ללא תובנה זו אתה נוהג כסומא בארובה הרודף אחרי זנבו שלו. אם אתה חושב שמושגים לא-מוגדרים שקולים למשתנים, אשר תוכנן התבוני ניתן להם במסגרת מערכת-האקסיומות המשתמשת בהם, הריי שאתה טועה טעות מרה, כי מושגי יסוד של מערכת אינם כלי-קיבול אלא התוכן עצמו, המעניק את העומק התבוני ה*חייב* להתקיים בכל מערכת מעניינת. אי-הבנתם של מושגי-יסוד *טרם* השימוש בהם, יוצרת מערכת ריקה מתבוניות, המבוססת על "נפנופי-ידיים" מכאניים חסרי כל תוכן. ניתן לראות את סימניה של שיטה ריקה-מתוכן זו, ע"י ידי בחינת האופן שבו בוחרים מתמטיקאים מילים מהשפה המדוברת, כדי להשתמש בהם במסגרת שפה פורמלית, לדוגמא: הריי ברור לחלוטין שסידרה אינסופית של אינטרפולציות בין אלמנטים מובחנים אינה נחסמת מעצם מהותה (אחרת היא לא היתה אינסופית), אז מדוע בחרה קהילת המתמטיקאים להשתמש במושגים "גבול" ו"חסם" כדי להגדיר אינטרפולציה זו? ברור לחלוטין כי יש הבדל מהותי בין המושגים EACH ו-ALL, אז מדוע בחרה קהילת המתמטיקאים לא להבדיל בין מושגים אלה בעת הגדרת הכמת-האוניברסלי? ולעייננו, ברור לחלוטין כי יש הבדל מהותי (כבר ברמה הלוגית) בין קו לנקודה, אז מדוע בחרה קהילת המתמטיקאים לתאר את תוכן R (שהוא אוסף של אלמנטים מובחנים) במושגים של קו ("הישר-הממשי)? ברור לחלוטין שמושג הרצף הינו הפוך ממושג האוסף (רצף אינו מכיל שום תת-אלמנטים בתחומו מעצם מהותו) אז מדוע משתמשת קהילת המתמטיקאים במושג הרצף כדי לתאר עוצמה הקשורה לאוסף של איברים מובחנים (לקרדינל של R יש את עוצמת-הרצף)? כמו-כן אשמח לדעת את תגובתך לתגובה 328976 , המראה בבירור את כשלונה של השיטה-הפורמלית כבר באת הגדרת-הקיום של הקבוצה-הריקה ב-ZF. אשמח לתגובתך הבהירה, אייל-אלמוני, לכל הנ"ל. תודה. |
|
||||
|
||||
"דרישה *ריגורוזית* זו" - זה לא היקש ריגורוזי. בתור מי שמתלונן כל הזמן על הוצאת המשמעות ממילים, אתה "גונב" מילים בלי סוף לצרכיך שלך. "ברור לחלוטין שקו יכול להתקיים סימולטנית בשני מצבים שונים" - לך זה ברור. לי לא. תוכל לתת דוגמה? "ברור לחלוטין כי יש הבדל מהותי בין המושגים EACH ו-ALL" - מה ההבדל המהותי? "הריי ברור לחלוטין שסידרה אינסופית של אינטרפולציות בין אלמנטים מובחנים אינה נחסמת" - לך זה ברור. לי לא. אגב, אתה נוטה כל הזמן לדחוף את המילה "אינטרפולציות" בלי סיבה ברורה. אולי תאמר פשוט "סידרה אינסופית של אלמנטים מובחנים"? "ברור לחלוטין כי יש הבדל מהותי (כבר ברמה הלוגית) בין קו לנקודה" - לך זה ברור. לי לא. "ברור לחלוטין שמושג הרצף הינו הפוך ממושג האוסף" - לך זה ברור. לי לא. |
|
||||
|
||||
|
||||
|
||||
משמעות המילה "ריגורוזי" היא "חמור" (לא זה שנוער) ואין שום בעיה שבעולם לדבר על "דרישה חמורה" (לא הנקבה של החמור). "אתה "גונב" מילים בלי סוף לצרכיך שלך" נהפוכו, אני מעורר מחדש את משמעותם המקורית של מילים שהושחתו ע"י מתמטיקאים. ""ברור לחלוטין כי יש הבדל מהותי בין המושגים EACH ו-ALL" - מה ההבדל המהותי?" EACH הינה התיחסות פרטנית לכל אלמנט ללא כפיית המסקנות על הכלל. ALL כופה תנאי כללי על אוסף של אלמנטים מובחנים, ללא התיחסות להבדלים ביניהם. ""ברור לחלוטין שקו יכול להתקיים סימולטנית בשני מצבים שונים" - לך זה ברור. לי לא. תוכל לתת דוגמה?" "ברור לחלוטין כי יש הבדל מהותי (כבר ברמה הלוגית) בין קו לנקודה" - לך זה ברור. לי לא. כן: ראה נא את http://www.createforum.com/phpbb/viewtopic.php?t=43&... ""הריי ברור לחלוטין שסידרה אינסופית של אינטרפולציות בין אלמנטים מובחנים אינה נחסמת" - לך זה ברור. לי לא." קרא נא זאת: I think you understand the idea of a smooth (pointless) segment, but you still have problems to understand that when we deal with the non-finite, the limit concept (which is a natural property of any finite mathematical object) is replaced by the proportion concept. "אגב, אתה נוטה כל הזמן לדחוף את המילה "אינטרפולציות" בלי סיבה ברורה. אולי תאמר פשוט "סידרה אינסופית של אלמנטים מובחנים"?"The simplest way to understand the proportion concept (which is valid in both non-finite andr finite mathematical objects) is to use 0_1 as the basic unit of any other mathematical object. 0_x/0_1 = 0_x and 0_1/0_x is the multiplicative inverse of 0_x. Sine any segment is indivisible by definition, we have to understand '/' not as a division operation but as a ratio between indivisible segments. For example Circumference/Diameter is the ratio between a close segment and a non-closed segment, and since this ratio is very important to us we give it a unique name, which is: Pi. The base method is a measurement tool that takes 0_1 and uses some invariant proportion according to it that can be found on infinitely many different scale levels that have self similarity over scales, where this self similarity is determined by the base value n where n = 2 → ∞ . In other words base_2 fractal is not identical to base_3 fractal ... etc. ad infinitum. When we understand fractals and the invariant proportion that is naturally related to them, we can understand something, which is simply amazing and beautiful: a) We know that 0_1 is a finite mathematical element, when it is compared to itself (or in other words, we use 0_1 as the ratio of itself, or the scale level of itself, for example 0_1/0_1). b) Let us say that we use base_2 fractal, and in this case we use smaller (fractions) or greater (integers) segments, to construct each scale level of the Base_2 fractal. c) Please pay attention that any base_n fractal is made of segments, where each segment is a finite mathematical object, which is length > 0 where 0 is not a finite segment, but a point. d) The basic difference between a point and a segment is this: A segment has a direction, for example: we can move forward of backward along closed of opened segment. Also we can talk about the right edge or the left edge of a segment, top and bottom, ... atc. We cannot do that in the case of a point, because a point has no direction at all (not 0 direction, but no direction at all). e) Since any base_n fractal is based on segments, and only on segments, this basic property cannot be changed, even if we have a non-finite base_n fractal. f) At the moment that we understand this fundamental fact about the base method, we immediately understand, that any non-finite path along this fractal cannot change the fact that any base_n fractal is made only by segments, where each segment > 0. g) 0 is used only as an initial place, which helps us to the base_n fractal as a measurement tool, but when we go beyond the initial place we are in the kingdom of segments. h) when we understand all of what is written above, we immediately understand that 0.111... [base_2] < 1 or in a more accurate way, since we are in the kingdom of segments the accurate notations for this notion is: [0.111..., _1) < 0_1 (where the notation '_1)' of [0.111..., _1) is not natural number 1, but an infinitesimal and non-reachable segment, which permanently prevents from 0.111... to reach the exact value of 0_1). Each [0.###, _#) has [0.000..., _1) which is an infinitesimal segment that is the complement of [0.###, _#) to 0_1. We have to understand some very interesting facts about this complement segment. a) If the complement segment is not used (by an addition operation), then [0.###, _#) is a non-finite unique sequence along some base_n fractal. b) If the complement segment is used (by an addition operation), then immediately we reach 0_1, but than [0.###...,_#) is changed to [0.###...,_#] or in other words, we get a finite sequence of segments, where the last segment is = or > than the previous first segment. But a deeper understanding of the above is this: Let us use base_10 in order to understand it, but it holds for any other base. By understanding [0.999..., _9) and [0.000..., _1) we get another beautiful insight, which is: If we do not use an addition between [0.999..., _9) and [0.000..., _1), then [0.999..., _9) is a non-finite fractail where [0.000..., _1) is an infinitesimal segment. When we use an addition between [0.999..., _9) and [0.000..., _1), then and only then [0.999..., _9) and [0.000..., _1) become finite objects ( notated as [0.999..., _9] and [0.000..., _1] ) that their exact length is segment 0_____1. By this insight we understand that our own action can change a mathematical object from a non-finite state to a finite state and vise versa. In other words, the mathematician himself is not an objective observer, but an active participator of any explored mathematical universe, which his influence on this universe must not be ignored anymore. כנראה שאינך מבין את ההבדל בין הפנמה (אינטרפולציה) להחצנה (אקסטרפולציה). הפנמה היא התייחסות לאלמנט Z , הסמוך יותר לאלמנט X מסמיכותו של אלמנט Y לאלמנט X . הפנמה היא התייחסות לאלמנט Z , המרוחק יותר מאלמנט X מהמרחק של אלמנט Y לאלמנט X . סמיכות ומרחק אינם בהכרח מושגים מטריים, אלא מצביעים על דמיון או אי-דמיון בין אלמנטים שונים. ""ברור לחלוטין שמושג הרצף הינו הפוך ממושג האוסף" - לך זה ברור. לי לא." הראה נא לי את האוסף המרכיב אלמנט רציף לחלוטין, אשר אינו מורכב מתת-אלמנטים. הדגם נא זאת על _________ |
|
||||
|
||||
תיקון טעות: החצנה (אקסטרפולציה) היא התייחסות לאלמנט Z , המרוחק יותר מאלמנט X מהמרחק של אלמנט Y לאלמנט X . |
|
||||
|
||||
|
||||
|
||||
1. אתה רוצה להגיד לי שההגדרה שלך ל"מספר" יותר מקורית (כלומר, עתיקה ואינטואיטיבית) מההגדרה המקובלת, שההגדרה ה"מקורית" של המונח "קבוצה" יכולה להיות "מלאה אך בלתי פריקה", שההגדרה המקורית ל"שלם" היא "מכסה את הרצף", ושיש משמעויות "מקוריות" ל"מרחב-גישור" ול"פונקצית גישור"? תהיה בריא. 2. מצא את ההבדלים: "לכל איש יש שם", "לכל האנשים יש שמות". האם טענה כלשהי מהשתיים *גוררת* את השנייה 1? האם יכולה להתקיים טענה אחת מבלי שתתקיים הטענה השנייה? 3. העמוד http://www.createforum.com/phpbb/viewtopic.php?t=43&... זכה ליותר ביקורים ממני מאשר "גוגל". אני עדיין לא מבין איך זה מוכיח את הטענה שלך. בנוסף, ראה סעיף 4. 4. כל הטקסט הזה הוא ההבנה שלך את המושג "ברור"? חוץ מזה, לא הבנתי בכלל איך זה מוכיח את הטענה. 5. אני מבין בהחלט למה אתה מתכוון במילה "אינטרפולציה". ובכל זאת, אין טעם שתחזור עליה שוב ושוב. מספיק לשאול האם קיימת סדרה אינסופית חסומה של מספרים. 6. לגבי בקשתך בסוף: אתה מניח שאני מקבל את קיומה של קבוצה המכילה "אלמנט רציף לחלוטין, אשר אינו מורכב מתת-אלמנטים". לרוע המזל, כל דבר שאני מזהה כ"רציף", אתה שולל בטענה שזהו "אוסף של איברים מובחנים". כל תשובה שלי לא תספק אותך. 7. שאלה מעניינת ויסודית שמשום-מה לא שאלתי קודם: כיצד אתה מגדיר קבוצה? |
|
||||
|
||||
1 ואביב י. היה מוסיף: "איך גוררת אם אין לה חבל?" |
|
||||
|
||||
"1. "אתה רוצה להגיד לי שההגדרה שלך ל"מספר" יותר מקורית (כלומר, עתיקה ואינטואיטיבית) מההגדרה המקובלת, שההגדרה ה"מקורית" של המונח "קבוצה" יכולה להיות "מלאה אך בלתי פריקה", שההגדרה המקורית ל"שלם" היא "מכסה את הרצף", ושיש משמעויות "מקוריות" ל"מרחב-גישור" ול"פונקצית גישור"? תהיה בריא." 1. תהיה בריא גם אתה. א. ההגדרה שלי למספר הטבעי היא עמוקה יותר מההגדרה הרגילה, המשתמשת עדיין בספירת עיזים, כבשים, ומיונם. הגיע הזמן לנוע הלאה, ולבסס את מושג המספר הטבעי על יכולותיה המובנות של התודעה עצמה, וזאת עשיתי, וכתוצאה מכך חשפתי יקום שלם שלא טופל עד כה במסגרת המתמטיקה הרגילה, אשר מתעלמת כליל התכונותיה המובנות של התודעה, המתוארות כפונקציות-גישור בין זכרונה לבין אוסף מחשבותיה. 7. שאלה מעניינת ויסודית שמשום-מה לא שאלתי קודם: כיצד אתה מגדיר קבוצה?" ב. "קבוצה" הינה מרחב-הדיון של התודעה, ומרחב זה אינו מוגבל לאוסף בלבד אלא למצב רציף כמו הזכרון. ג. השלם אינו מכסה את הרצף, אלא הוא הרצף בכבודו ובעצמו. ד. פונקציית-גישור היא תצורת גישור בין הרצף לאוסף, המתקיימת בין גישור מקבילי לגישור סדרתי. מרחב-הגישור הינו התחום המשמש למגוון אינסופי של אפשרויות חבירה בין פונקציות הגישור. "מצא את ההבדלים: "לכל איש יש שם", "לכל האנשים יש שמות"." במה ידיך אתה מדגים שוב את אי ההבחנה בין EACH ל- ALL כי הכמת "לכל" מקביל למילה ALL ולא למילה EACH. ". כל הטקסט הזה הוא ההבנה שלך את המושג "ברור"? חוץ מזה, לא הבנתי בכלל איך זה מוכיח את הטענה" הסבר לי באיזה מחסום בלתי-עביר בתודעתך אתה נתקל כאשר את מתבקש להבין כי קטע יכול להמצא סימולטנית בשני צדדיה של של מערכת בינרית , כאשר לנקודה אין אפשרות להמצא סימולטנית השני צדדיה של מערכת בינרית? ."6 לגבי בקשתך בסוף: אתה מניח שאני מקבל את קיומה של קבוצה המכילה "אלמנט רציף לחלוטין, אשר אינו מורכב מתת-אלמנטים". לרוע המזל, כל דבר שאני מזהה כ"רציף", אתה שולל בטענה שזהו "אוסף של איברים מובחנים". כל תשובה שלי לא תספק אותך." א. למה אתה חושב שאתה צריך לספק אותי? אם אתה באמת מבין את ההבדל שבין רצף לאוסף הריי שאין כאן שום "עיגולי-פינות" או "כיפופי-התאמה" לצרכיו של מישהו. |
|
||||
|
||||
1.א. "לבסס את מושג המספר הטבעי" - אתה לוקח מושג ונותן לו משמעות אחרת לגמרי, ובכך מרוקן אותו ממשמעותו המקורית, אשר ניתנת להבנה ע"י התודעה. מכיוון שכך, ההוכחות שלך לא מייצגות שום תובנה. וואו! אני פשוט יכול להיות הדובר שלך. ב. *זאת* אמורה להיות המשמעות ה"מקורית" של המונח "קבוצה"? אני, במלוא תובנתי, אפילו לא מבין אותו. אני בכלל לא יודע מה זה "מרחב דיון". אני בקושי יודע מה זו "תודעה". אני לא חווה את הזכרון שלי כרצף. אני חוזר לשאלה שכבר שאלתי: מה דעתך על הפרדוקס של ראסל? ד. החלפת את המונח "פונקצית גישור" במונח "תצורת גישור". זה לא ממש עוזר. אני לא יודע באיזה מובן היא (הפונקציה? התצורה?) מתקיימת בין גישור סדרתי לגישור מקבילי. אני לא יודע מה זה "גישור סדרתי" ו"גישור מקבילי". אני לא יודע מה הן "חבירות" של פונקציות-גישור. נסח לי בשפה פסיכולוגית: מהי פונקצית הגישור? איפה היא משתלבת בתהליך המחשבתי? 2. "במה ידיך אתה מדגים" - תרגם בבקשה לאנגלית את שני המשפטים. עכשיו תראה לי את ההבדלים המהותיים ביניהם. האם יש ביניהם יחסי גרירה? האם יכול כל אחד מהם להתקיים ללא השני? 3. "הסבר לי באיזה מחסום" - אני בהחלט "רואה" למה אתה מתכוון כשאתה אומר IN AND OUT. אם נתון חצי מישור, אז כל נקודה תהיה "בתוכו" או "מחוצה לו", ואילו ישר יכול להיות "בתוכו", "מחוצה לו", או "גם וגם". הבעיה: כאשר אתה בוחר "תחום" במישור אתה בוחר קבוצה של *נקודות*. באותה מידה היית יכול לבחור קבוצה של *ישרים* (רעיון הרבה פחות אינטואיטיבי ויזואלית), ואז כל ישר היה "בתוכה" או "מחוצה לה", ודווקא הנקודות היו יכולות להיות בשלושה מצבים. |
|
||||
|
||||
".א. "לבסס את מושג המספר הטבעי" - אתה לוקח מושג ונותן לו משמעות אחרת לגמרי, ובכך מרוקן אותו ממשמעותו המקורית, אשר ניתנת להבנה ע"י התודעה. מכיוון שכך, ההוכחות שלך לא מייצגות שום תובנה. וואו! אני פשוט יכול להיות הדובר שלך." מה מונע ממך מלהבין את http://www.geocities.com/complementarytheory/ONN1.pd... או http://www.geocities.com/complementarytheory/TAP.pdf ? "*זאת* אמורה להיות המשמעות ה"מקורית" של המונח "קבוצה"? אני, במלוא תובנתי, אפילו לא מבין אותו." הריי את המשפט הנ"ל בחנת במרחב-התודעה שלך, אז מה בדיוק אתה לא מבין ואיפה אתה חושב ההבנה או אי-ההבנה שלך מתקיימת? "נסח לי בשפה פסיכולוגית: מהי פונקצית הגישור? איפה היא משתלבת בתהליך המחשבתי?" זאת איננה פסיכולוגיה אלא מתמטיקה במיטבה, אשר אינה מתעלמת יותר מהתודעה, כגורם מכונן שלה. עיין נא בhttp://www.createforum.com/phpbb/viewtopic.php?t=38&... "אני חוזר לשאלה שכבר שאלתי: מה דעתך על הפרדוקס של ראסל?" ""במה ידיך אתה מדגים" - תרגם בבקשה לאנגלית את שני המשפטים. עכשיו תראה לי את ההבדלים המהותיים ביניהם. האם יש ביניהם יחסי גרירה? האם יכול כל אחד מהם להתקיים ללא השני?" EACH אינו ניתן לתרגום לעברית, ALL הינו "לכל" בעברית. ההבדל בין EACH ל-ALL הוא כמו ההבדל שבין דדוקציה(ALL) לאינדוקציה(EACH). " הבעיה: כאשר אתה בוחר "תחום" במישור אתה בוחר קבוצה של *נקודות*. " מי דיבר על אוסף? אני מתכוון **בפירוש** להבדל שבין קטע יחיד לנקודה יחידה! |
|
||||
|
||||
"מה מונע ממך מלהבין..." א. העובדה שהחלטתי לא לקרוא יותר קישורים שלך. כמו שאמר אלון, אני עקשן מאוד בניסיון (חסר הסיכוי, פחות-או-יותר) להבין אותך. הקישורים כבר דורשים ממני יותר מדי מאמץ. את רובם אני כבר מכיר היטב, ועדיין לא מבין. עוד קישור אליהם לא יעזור. מעבר לתוכן התגובות, אני לא מתכוון להתאמץ. ב. העובדה שהוא בלתי-קריא. הייתי בעמוד הזה כל כך הרבה פעמים! "מה בדיוק אתה לא מבין?" א. איך אדם יכול לחשוב שההגדרה הזאת לקבוצה היא "המשמעות המקורית של המילה". ב. מה זה "מרחב דיון", למשל. "זאת איננה פסיכולוגיה" אני לא מבין מה זו "פונקצית גישור". אני אשמח אם תסביר לי בלשון בני אדם. "אלא מתמטיקה במיטבה" <הוסף כאן ריקנות מוחלטת.> "EACH אינו ניתן לתרגום לעברית" ביקשתי שתתרגם ל*אנגלית* את שני המשפטים "לכל איש יש שם", "לכל האנשים יש שמות". אני אחסוך לך את העבודה: "All people have names." כעת ענה על השאלות: האם אחד משני המשפטים גורר את השני? האם יכול כל אחד מהם להתקיים ללא השני?"Each person has a name." (התשובות יכולות לכלול נימוקים, ואפילו רצוי שיכילו, אבל אנא: תשובה אחת לכל שאלה, ושתתחיל במשפט "כן." או במשפט "לא.") "מי דיבר על אוסף..." לא הבנת אותי. לא משנה. אני לא מתכוון להסביר את זה שוב. |
|
||||
|
||||
'' אני עקשן מאוד בניסיון (חסר הסיכוי, פחות-או-יותר) להבין אותך.'' לך לשלום אייל צעיר. |
|
||||
|
||||
אין סיכוי, אייל צעיר, כי תבין את דורון, לכן קבל בברכה, את עצמו אליך. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |