|
||||
|
||||
מאה אחוז. אין בעיה. אם אתה הולך על שברים עשרוניים - אז כפי שאמרתי, אינך יכול לפתח את האירציונליים עד הסוף, מה שאתה יכול לעשות, עקרונית, לכל מספר רציונלי. אם אתה הולך על שברים משולבים - אז מספר אי רציונלי דורש אינסוף שברים, ואילו מספר רציונלי - רק אחד. וכמו שאמרת גם אתה - את המספרים הטרנסצנדנטליים לא תוכל לפתח אפילו כך. וכשאתה אומר שיש "הרבה מאוד מספרים אי רציונליים" שאפשר לגלות את חוקיותם (הדוגמא של חתך הזהב) למה אתה מתכוון ב"הרבה מאוד"? 10? 100? מיליון? כלומר, בכל מקרה מספר אפסי מתוך אינסוף שאיננו אפילו בר מניה? |
|
||||
|
||||
אבל למה, הו למה, את מרשה לעצמך בפיתוח העשרוני לקרוא לפיתוח מחזורי אינסופי "לפתח עד הסוף", ואז זה בסדר, אבל בפיתוח לשברים משולבים לאותו דבר בדיוק (שבר מחזורי אינסופי) את מתייחסת כחישוב לא מספק? למה? בכל מודל חישובי סביר יש רק מספר בן-מנייה של מספרים "ניתנים לחישוב" ומספר לא בן-מנייה של מספרים שאינם "ניתנים לחישוב". זה ידוע ונחמד. אבל את ניסית כל הזמן לטעון משהו לגבי מספרים *רציונליים*, לא מספרים ניתנים לחישוב. כל הפתיל הזה נועד להבהיר שאין למספרים רציונליים איזשהו יתרון חישובי מהותי, או יתרון הכרתי, על-פני *חלק* מהמספרים האי-רציונליים. |
|
||||
|
||||
א. אני אכן מדברת על *הרציונליים*. ואני אומרת שבכל שיטת חישוב שהיא, יש להם יתרון מובנה: בשברים עשרוניים - מפני שהם ניתנים לפיתוח אינסופי מחזורי, שהמספרים האי-רציונליים לא ניתנים לו. בשברים "רגילים" - משום שהם ניתנים לייצוג כשבר פשוט אחד, והאי-רציונליים לא ניתנים לו. ב. שוב, כפי שאמרת בעצמך, רק חלק מהמספרים האי-רציונליים ניתנים לפיתוח כשברים משולבים מחזוריים. אפילו אם אתה טוען כאן (אני תוהה אם הבנתי נכון) שיש אינסוף בר מניה של אי-רצניונליים שיש להם ייצוג *נוח* כזה, הוא עדיין מתגמד מאוד לעומת האינסוף מסדר א1 של אלה שחסרים אותו. לעומת זאת, הרציונליים *כולם* ניתנים לייצוג נוח יותר ומדויק יותר בכל שיטה שתבחר (גם אם כמותם הכוללת היא בת מניה בלבד). ג. מסקנתי מכאן היא, ש*יש* לרציונליים יתרון חישובי מהותי על פני האי-רציונליים. יותר מזה, יתרון הכרתי ודאי שיש להם, אולי למעט חריגים בודדים מאוד מבין האי-רציונליים. בחיי היומייום אנחנו נתקלים בעיקר במספרים טבעיים: שני שולחנות, מאה תלמידים וכיו"ב. אפשר להרחיב את זה לשליליים - למשל, המינוס בבנק. או לשברים פשוטים - פרוסות לחם, חלוקת רכוש וכך הלאה. אלה אמנם אינם ב*פועל* שברים פשוטים: סביר להניח ש*כל* חלוקה כמעט מסוג זה תיפול על קצוות אי-רציונליים. אבל לצורך החישוב היומיומי הם רציונליים לכל דבר. כך גם, אפילו, לגבי הרבה דברים הדורשים דיוק רב יחסית: חישובי מטענים, שרטוטים אדריכליים, אפילו בניית חלליות - נראה לי שאיש איננו מכניס אליה מספרים אי רציונליים. מעניין, לא? בהתחשב בעובדה שמספרם זניח יחסית לאי-רציונליים. |
|
||||
|
||||
חריגים בודדים מאוד: שורש שתיים, שורש שלוש, שורש חמש, שורש שש, שורש שבע, .... מהם "קצוות אי-רציונליים"? איש אינו מכניס מספרים אי-רציונליים לבניית חלליות? ישמרנו האל. אפילו בחללית פשוטה יש די הרבה אלכסונים של ריבועים. אפילו תוכנות-מחשב כמו Mathematica או Maple עובדות מצויין עם מספרים אי-רציונליים, וכשמדובר בחישוב מסלולה של וויאג'ר - מזל שכך הוא. "מעניין, לא?" לא כל כך. למה? תוכלי להקל על שנינו ולהסביר מה התיזה שאת מציגה? להזכירך, התחלת מהטענות הבאות (אני מניח שזו את): "השם "אי רציונליים" לא ניתן למספרים האלה מסיבה שרירותית לחלוטין, אלא משום שהם דומים (לא קשורים: מלכתחילה לא דיברתי על קשר, אלא על דמיון) למבנים אי רציונליים". מדוע את סבורה כך? "אין לנו כל דרך לדעת בדיוק מוחלט את גודלו של מספר אי רציונלי: כלומר, באופן מעשי, איננו יודעים בעצם מהו אותו מספר". כפי שהוסבר פה חזור והסבר, אנחנו יודעים "מהו" כל אחד מבין הרבה מאוד מספרים אי-רציונליים באותה מידה של הצלחה כמו מספרים רציונליים. *יש* מספרים אחרים שלא, נכון. אבל זה לא מה שאת טוענת כאן... |
|
||||
|
||||
כן, נכון, מיד כשסגרתי את תגובתי הקודמת ידעתי שעליי להוסיף הסבר מסוים אבל הייתי עייפה מדי. אני משערת (אולי תגיד שטעיתי) שגם בבניית חלליות המספרים ה*התחלתיים* שעובדים אתם הם רציונליים: למשל, סביר שלא יתכננו מראש תא שאורכו שורש שבע ורוחבו שורש שש. המספרים האי רציונליים נכנסים כ"תוצר" של הרציונליים. כפי שאמרת, למשל באלכסונים. למשל ב*חישוב* מסלולים. כשאני דיברתי על "חריגים בודדים מאוד" התכוונתי, למשל, לפאי - שנכנס מלכתחילה לכל מבנה עגול. ובעיניי, לפחות, זה מעניין. אנסה לתת דוגמא: נכון שאין במציאות שום מבחר *אינסופי באמת* של דברים מסוג מסוים שאיננו מתמטי. ובכל זאת - דמיין לך ספרייה "אינסופית" כזו, שיש בה אינסוף (בן מניה) של ספרים הכתובים בסינית. ביניהם מפוזרים, באקראי, מיליארד ספרים ביפנית. כיוון שאינך קורא אף אחת מהשפות (לצורך העניין. למיטב ידיעתי, אתה קורא את שתיהן שוטף...), אתה בוחר לך ספר רק לפי צורתו המלבבת. מה הסיכוי שתיפול על ספר ביפנית?1 כמובן (זו אני) התחלתי ממספרים אי רציונליים: אני מדברת על תופעה שתיתכן רק בהם. וגם אם תנפה מהם את כל אותם "הרבה מאוד מספרים שאנחנו יודעים מהם באותה מידה של הצלחה כמו מספרים רציונליים", עדיין תישאר עם עוצמה לא בת מניה של מספרים ש"איננו" יודעים זאת לגביהם. 1. (יש "לתרגם" את הדוגמא, כמובן, לעוצמות א1 ו-א0 בהתאמה, לצורך הצפיפות). |
|
||||
|
||||
למה פאי חריג? אם מישהו מתכנן מעגל ברדיוס 1, יוצא לו "כתוצר" היקף של שני פאי ושטח של פאי. מדוע זה שונה מריבוע עם צלע 1 שיוצר לו אלכסון אי-רציונלי כתוצר? אם אני מבין נכון, הטענה עכשיו השתנתה מ"אי-אפשר לדעת מספרים אי-רציונליים" ל"בני-אדם נוטים לבחור מספרים רציונליים כשהברירה בידם". זה נכון (כמובן), ולא כל כך מפתיע - ה"סיכוי" שזה יקרה באקראי הוא אפסי, אבל כשאני בוחר את רוחב המיטה שלי אני לא בוחר זאת באקראי. מה את מסיקה מכך, ולמה זה כל כך מעניין? "אני מדברת על תופעה שתיתכן רק בהם" - איזו תופעה? |
|
||||
|
||||
(אני מקווה שאצליח לכתוב משהו וגם לשלוח אותו. המחשב מאוד מתנכר אלי כרגע). פאי חריג משום שהוא מופיע ב*כל* חישוב שקשור למבנה מעוגל. עד כמה שידוע לי, לשורש 2 זה לא קורה *אלא*, למשל, בריבוע של 1 על 1. לא שיניתי את טענתי לגבי אי-הידיעה של האי-רציונליים: נהפוך הוא, אמרתי שגם אם תנפה את כל האי-רציונליים ה"רבים" כהגדרתך, שאפשר לדעתם "בקלות", לכאורה - עדיין תישאר לך בדיוק אותה עצמה של מספרים ש*אי אפשר* לדעת אותם בקלות כזאת. אבל אתה אמרת ש"אין הבדל מהותי, חישובי או הכרתי, בין הרציונליים והאי רציונליים - ובעניין זה העליתי את נטייתם של אנשים לבחור במספרים רציונליים דווקא: לי, לפחות, נראה שזה אומר ש*קיימים* הבדלים כאלה. התופעה של מספר שאיננו יכולים לדעת את גודלו באופן מוגדר היטב היא זו שתיתכן רק לגבי האי-רציונליים. (ולגבי א1 מתוכם). |
|
||||
|
||||
זה היה טריק מאוד זול (לדעתי). טענה: יש דמיון בין המספרים האי-רציונליים לבין מספר העוגות המוקפצות מוקפצות מוקפצות שיש לי במקרר. הוכחה: אולי ניתן להדגים את חוסר הדמיון בין מספר העוגות המוקפצות מוקפצות מוקפצות שיש לי במקרר למספרים אי-רציונליים מאוד מסוימים (למשל פאי, e, שורש שתיים ועוד רשימה מאוד ארוכה) אבל תמיד למדגים ישארו א1 מספרים כאלה לגביהם הוא לא יצליח להפריך את הדמיון. ==> אין שום סיבה לזנוח את מה שנאמר בטענה. ==> אכן יש דמיון בין המספרים האי-רציונליים לבין מספר העוגות המוקפצות מוקפצות מוקפצות שיש לי במקרר. מ.ש.ל. |
|
||||
|
||||
מה כאן טריק? מה כאן זול? ובעיקר - על מה יצא הקצף? ("עוגות מוקפצות" הן מלאות קצף, אולי? אני לא מתמצאת). |
|
||||
|
||||
הטריק הוא פשוט. שימוש בעובדה שיש א1 איברים בקבוצה, כדי שיהיה אפשר להגיד על רוב האיברים בקבוצה מה שמתחשמק לנו. |
|
||||
|
||||
להזכירך, גם א0 היא עוצמה אינסופית. בעיקרון, לו הרעיון היה ש"יהיה אפשר להגיד על רוב האיברים בקבוצה מה שמתחשמק לנו." - זה היה צריך לפעול גם על הרציונליים. (ואני עדיין לא מבינה בשם מי אתה נפגע? מדוע הקצף?:)) |
|
||||
|
||||
על מה יצא הקצף? על עוצמת הרצף. (אביב תמיד הרגיש קירבה לאי-רציונלים באשר הם). |
|
||||
|
||||
אם כך, הוא כנראה מרגיש אליהם קרבה רציונליסטית מאוד. אני, למשל, מרגישה אליהם קרבה רבה בזכות מה שהם. |
|
||||
|
||||
את א0 אני מכיר. הקצף זה בשביל העוגות. מה שאני מנסה להגיד הוא פשוט: הטענה שלך על האי-רציונלים *בכללותם* לא נכונה (גם אם היא נכונה עבור חלק אחושלוקי גדול מהם). אם הטענה שלך מסתכמת ב:המספרים שלא ניתנים לחישוב, לא ניתנים לחישוב, אז בסדר (אבל אז לפאי, שורש שתיים, e ועוד רבים1 אחרים אין שום קשר לטענה שלך - הם כן ניתנים לחישוב ואותם אנחנו כן מבינים). ________ 1 א0? |
|
||||
|
||||
תגובה 311303 |
|
||||
|
||||
פאי הוא *תמיד* היחס בין היקף מעגל לקוטרו; שורש שתיים הוא *תמיד* היחס בין אלכסון של ריבוע לצלעו. ההבדל לא נהיר לי. אף פעם לא אמרתי כלום על העצמה של המספרים הקשים-לידיעה. לאורך כל הדרך התווכחתי רק על הטענה שהאי-רציונליים - *כל* האי-רציונליים - הם כאלה, לעומת הרציונליים שהם לא. (אמרת, למשל, "אני אכן מדברת על *הרציונליים*. ואני אומרת שבכל שיטת חישוב שהיא, יש להם יתרון מובנה", או "אי יכולתנו לדעת את גודלם המדויק של מספרים אי רציונליים...") אם את משנה עכשיו את טענתך, לאמור: * יש מספרים שאפשר "לדעת" אותם, והם כוללים את הרציונליים, האלגבריים האי-רציונליים, ואינסוף טרנסצנדטיים (גם הם כמובן אי-רציונליים) שהם computable; לעומתם, יש מספר לא בן-מנייה של מספרים שאי-אפשר "לדעת" אותם * אז אין לי כל ויכוח עם הטענה הזו. אלא שכעת לא ברורות טענותיך על הכינוי הלא-מקרי (לכאורה) "אי-רציונלי", וכו'. יש מספרים ניתנים לחישוב, יש (הרבה יותר) מספרים שאינם ניתנים לחישוב, טוב ויפה. מה לכל זאת ולתבניות ידע, שאלות מדעיות הנוצרות כשבעיות אחרות נפתרות, וכל הג'אז הזה? |
|
||||
|
||||
נא לקחת את ''כל הג'אז הזה'' בהומור וברוח טובה, לא כירידה. |
|
||||
|
||||
זה בסדר, כך לקחתי אותם, על אף שאני הייתי אומרת "כל הפאנק הזה".:). |
|
||||
|
||||
מה זאת אומרת "מספרים שאי אפשר לדעת אותם"? איזה מספר אי-רציונלי אי אפשר לדעת? (הייתי מבין ניסוח שאומר "מספרים אי-רציונליים שעדיין לא דיברנו עליהם או ניסינו להגדיר" - באמת תמיד ישאר לנו א1 מאלה) יש מספרים שהם באופן *עקרוני* לא computable? יש דוגמא? |
|
||||
|
||||
(אתה מבקש *דוגמה* למספר שאנחנו לא מסוגלים לחשב, ולכן על אחת כמה וכמה לא לתאר?) |
|
||||
|
||||
תודה. |
|
||||
|
||||
מרתק! |
|
||||
|
||||
ודאי שיש. לחשב זה הרבה יותר חזק מלתאר. למשל: |
|
||||
|
||||
כמו כן, לתת קישור זה הרבה יותר חזק מלעשות קופי-פייסט של כתובת. |
|
||||
|
||||
מגניב. |
|
||||
|
||||
אכן. |
|
||||
|
||||
אתה מנסה לבחון אם אני עקבי? :-) |
|
||||
|
||||
לא. באמת ובתמים לא הכרתי את זה (תוקן באדיבותך ובאדיבות גדי). |
|
||||
|
||||
ברור, רק תהיתי למה שאלת פעמיים (אחת בשביל "באמת" ואחת בשביל "בתמים"?) (תגיד, אתה לא לומד/למדת/גם/רק מדעי-המחשב? אם לא, קבל את התנצלותי, אבל אם כן - מה לעזאזל מלמדים את הנוער בימינו? סי שארפ?) |
|
||||
|
||||
יש הבדל בין מה שמלמדים את הנוער לבין מה שהנוער לומד ממי שמלמד אותו (הפסקתי להגיע אל ההרצאות ב"מודלים חישוביים" לפני אמצע הסימסטר, תרם התחלתי ללמוד למבחן ואת הספר של Sipser בנושא התחלתי לקרוא רק בסוף השבוע שעבר). אבל נחמד שאתה מתעניין :) |
|
||||
|
||||
את עניין שורש 2 אכן שכחתי. מתנצלת. זה חלק מאוד לא מהותי ממה שאמרתי. "לאורך כל הדרך התווכחתי רק על הטענה שהאי-רציונליים - *כל* האי-רציונליים - הם כאלה, לעומת הרציונליים שהם לא." אתה שוכח שטענת, לפחות לגבי האי-רציונליים ש*אינם* קשים לידיעה, שאין שום הבדל מהותי חישובי/הכרתי ביניהם לבין הרציונליים. נראה לי שדוגמת הספרייה שהבאתי אמורה להראות שלרציונליים יתרון הכרתי/חישובי משמעותי על פני האי רציונליים. אחרת איך תסביר את העובדה ש*כל* חישוב של *כל* אחד לגבי *כל* עניין בחיים הממשיים מתחיל, כפי שאמרנו, ממספרים רציונליים - שהם מיעוט זניח מתוך הממשיים? (כלומר, *שום* חישוב כזה אינו מתחיל דווקא מאי-רציונליים). אשר על כן, אינני רואה שאני נדרשת לשנות את טענתי באופן מהותי. ולעניין תבניות היידע (וכל הג'ז/הפאנק הזה): *אם* אני צודקת, ופתרון של בעיות מדעיות מהותיות פותח הרבה מאוד שאלות חדשות, אזי מטבעו של התהליך שהוא אינסופי ולא יסתיים לעולם (כלומר, לא סביר שיסתיים לפני "סיום" האנושות.) לכן, אותם חלקים של העולם (בכל התחומים. לא התכוונתי כאן רק למדעים "קשים") שעדיין לא נחקרו/פוענחו/נחשפו עד תקופה מסוימת יעלו תמיד בהרבה על אלה שכבר גלויים לנו באותה תקופה. כעת, כיוון שליידע מדעי - גם בתחומים "רכים" יחסית של המדע - נחשב רק יידע שנתפס בפרמטרים רציונליים, ולחילופין - יידע שיש סיבות טובות לקבלו, כשהוא סותר את התפיסה הרציונלית הקיימת, מחייב את הרחבתה (ראה מכניקת הקוואנטים) - פירושו של דבר שהיידע החסר לנו בכל תקופה נתונה, לפחות בחלקו הגדול, שייך מבחינתנו למעין כאוס שלא החלנו/הרחבנו אליו עדיין את התבניות הרציונליות שלנו.1 1. (צר לי על הסרבול. זו פעם ראשונה שאני מנסה לנסח את זה שלא במסגרת דיאלוג). |
|
||||
|
||||
איך הגענו מ"סביר שלא יתכננו מראש תא שאורכו שורש שבע ורוחבו שורש שש" ל"*כל* חישוב של *כל* אחד לגבי *כל* עניין בחיים הממשיים מתחיל, כפי שאמרנו, ממספרים רציונליים"? כפי שאמרנו? מי אמר? אני לא יודע איפה חישוב "מתחיל", אבל היי סמוכה ובטוחה שכשמחשבים מסלול של חללית הרבה פעמים המספרים הראשונים המופיעים בחישוב הם אי-רציונליים למשעי. "אותם חלקים של העולם... שעדיין לא נחקרו/פוענחו/נחשפו עד תקופה מסוימת יעלו תמיד בהרבה על אלה שכבר גלויים לנו באותה תקופה". כמו שאמרתי, אולי כן, ואולי לא. אני מבין שאת לא מתכוונת *רק* למדעים "קשים", אבל אם את מתכוונת *גם* למדעים קשים, זו דווקא נשמעת לי תחזית לא סבירה. למשפט האחרון: אני לא יודע איך כאוס, או "מעין כאוס", שייך לכאן. אני לא יודע מה זה "פרמטרים רציונליים" - את מתכוונת ל*מספרים* רציונליים? אנחנו מדברים פה על אנלוגיה, על דמיון מקרי, או על דמיון לא מקרי בין תבניות ידע רציונליות למספרים רציונליים? |
|
||||
|
||||
אתה יכול לתת דוגמא נוספת, חוץ ממסלולים של חלליות (אינני יודעת עליהם מספיק) לחישוב "בחיים הממשיים" ש*מתחיל* ממספרים אי רציונליים? אתה עדיין סבור ש*אין* הבדל מהותי חישובי ו/או הכרתי בין הרציונליים לאי רציונליים? "כמו שאמרתי, אולי כן, ואולי לא." או.קיי.: אני אמרתי "אם". למעשה, הרבה קודם, בפתיל, אמרת משהו בסגנון "נניח שכן, אז...". אז בהנחה שכן, אני ממשיכה את המשפט. כאוס הוא ההיפך מסדר, ולא הייתי אמורה להכניס אותו הנה (כי כדי להסביר למה כוונתי כאן צריך להיכנס לסיפור האונטולוגי, שזה ממש דיון מסוג אחר). "פרמטרים רציונליים" הם, פחות או יותר, קני המידה שלנו לרציונליות. ו"אנחנו" מדברים פה על דמיון, מקרי או לא מקרי (אינני יודעת) בין: 1. הטענה שיש, וסביר שגם יהיו תמיד, יותר דברים שאינם ידועים לנו מאלה הידועים לנו - כלומר, יותר דברים שטרם "התיישבו" בתוך המערכת הרציונלית שלנו מדברים שעדיין לא מרושתים בה. ובין: 2. העובדה שיש יותר מספרים אי רציונליים ממספרים רציונליים - כאשר המספרים האי-רציונליים, ברובם המוחלט, סביר שיישארו הרבה פחות נגישים לנו (או כלל לא נגישים לנו) מבחינה הכרתית, מאלה הרציונליים. |
|
||||
|
||||
אני לא מבין משהו. ממה שהבנתי, כל המספרים הניתנים לחישוב הם בני מנייה, ולכן לא נכון לומר שיש יותר אי רציונליים *שאיתם אנחנו מסוגלים לעבוד* מאשר רציונליים (מבחינת עוצמות, יש בדיוק אותו מספר). יש הרבה יותר אי רציונליים מהסוג שאותו אנחנו לא מסוגלים לחשב, אבל אף אחד לא מופתע שאנחנו לא מתחילים חישוב ממנו, נכון? |
|
||||
|
||||
איפה אמרתי (אם אתה טוען שאמרתי) שיש יותר אי-רציונליים שאתם אנחנו מסוגלים לעבוד מאשר רציונליים כאלה? למיטב הבנתי, אלון טען שאין הבדל חישובי/הכרתי מהותי בין הרציונליים לאי רציונליים. אם הוא מגביל את זה (לא ראיתי את ההגבלה) לאי-רציונליים שניתנים לחישוב, אז או.קיי. יש באמת אותה עוצמה כמו של הרציונליים. ועדיין, משום מה, לא ראיתי בינתיים דוגמא של חישוב ממשי אחד (למעט, אולי, מסלולי חלליות) שמתחילים אותו ממספרים אי רציונליים. למה זה? |
|
||||
|
||||
אני זוכר במעורפל משהו עם ספריה וספרים בסינית ויפנית, ואיכשהו קיבלתי את הרושם שהבעיה הייתה שיש *יותר* אי רציונליים מרציונליים. אגב, אני, אולי בניגוד לאלון, בכלל לא בטוח שיש חישוב (נומרי) כלשהו בעולם שמשתמש במספרים אי רציונליים, מהסיבה הפשוטה שכל המספרים שהמחשב יכול להכיל הם בעלי מספר סופי של ספרות, ולכן הם בהכרח רציונליים. אני לא בטוח מה הכוונה ב"חישוב ממשי". אפשר דוגמאות של מה לדעתך צריך "לחשב" (חוץ ממסלולים של חלליות)? בשביל עודף במכולת די ברור שלא צריך אי רציונליים. |
|
||||
|
||||
סרגל החישוב1 שהיה לי פעם היה מתעסק עם אירציונליים בחדוה רבה. למעשה אני יכול להכריז בוודאות גמורה שכל המספרים שהוא עבד איתם היו כאלה, ורק אני הייתי מתרגם אותם למשהו רציונלי בסוף התהליך בגלל מגבלות טכניות. ______________ 1- מחשב אנלוגי עממי שהיה נפוץ בתקופת הדינוזאורים |
|
||||
|
||||
אחד הסממנים הבולטים של הדינוזאורים היו, אכן, אי-רציונליות מחושבת היטב. |
|
||||
|
||||
אתה לא זה ששכנע אותי בדיון על זנון שהעולם דיסקרטי? בעולם דיסקרטי, אין מקום למספרים אי רציונליים על סרגלי חישוב, דומני. |
|
||||
|
||||
חס וחלילה לי מלטעון טענה משונה כזאת. כל מה שתרמתי בדיון ההוא היה לענות על הערה קטנה שלך לאריק, בה אמרת שאתה לא רואה איך בעולם דיסקרטי הבעיה נפתרת. את זה ניסיתי להסביר, בלי לטעון שום דבר לגבי הרישא. מלבד זאת, גם בעולם דיסקרטי אני לא רואה סיבה שאחת השנתות של הסרגל נופלת בדיוק על פיי או על e. מישהו קבע שאסור ל"אטום חלל" (ואני *לא* אומר שקיים דבר כזה) להיות על גבול אירציונלי? לסיכום: שוב שופכים את דמי. אין לי שום עמדה בשאלה אם המרחב דיסקרטי או רציף, ואני אפילו מסרב לנחש את התשובה (לא רוצה להסתכסך עם איינשטיין ולא עם וויטן). |
|
||||
|
||||
אם אטום חלל נופל בדיוק על e, זה אומר שקיים מספר שלם של אטומי חלל בין e ובין ראשית הצירים. למספר הזה נקרא x. עכשיו, נספור כמה אטומי חלל לוקחים עד שמגיעים ל-1 (אני מניח כי אטום חלל נופל בדיוק על e) ולמספר הזה נקרא y. עכשיו, x/y זה בדיוק e, ומצד שני גם x וגם y הם מספרים שלמים. קיבלנו ש-e רציונלי. (אגב, הניסוח המקורי של הבעייתיות שבמספרים אי רציונליים היה בדיוק זה - היוונים שמו לב לכך שיש שני אורכים שאין להם מידה משותפת, כלומר אורך כלשהו ששני האורכים הם כפולות שלו) |
|
||||
|
||||
מנין לך שיש מספר שלם של אטומי חלל בין הראשית ל 1? אם יש כזה, ממילא הוכחת שהקוטר1 שלהם רציונלי בלי צורך בכל האריתמטיקה שעשית. (אזהרה: אם המתמטיקה שלי דפוקה, אני מתכוון לשלוף בסוף את האס מהשרוול: מי אמר בכלל שכל אטומי החלל הם באותו גודל?) __________ 1- או האורך, או מה שלא יהיה שם. |
|
||||
|
||||
אם אין מספר שלם של אטומי חלל בין הראשית ל-1 או אם אטומי החלל לא באותו גודל, ניצחת אותי, אבל תצטרך לספק הסבר איך מצליחים לבנות סרגל מדוייק תחת ההנחות הללו. |
|
||||
|
||||
לא הבנתי את הבעיה. אני לוקח 300^10 אטומי חלל, נניח כרגע שהם זהים, שם אותם בשורה, ובמקום אליו הגיע האחרון שבהם אני חורץ חריץ קטן, ורושם לידו "1". אני חוזר על זה מאותו חריץ הלאה והלאה ומקבל את הסרגל המבוקש. |
|
||||
|
||||
זה רק אני או שעשית כרגע בדיוק את מה שאמרתי ש*אי* אפשר לעשות: גם הנחת שכל האטומים זהים בגודלם, וגם הנחת שיש מספר שלם של אטומי חלל בין הראשית ל-1? מילא. נניח שעשית את זה. עכשיו, איך אתה מסמן את e (בדיוק! לא בערך) על הסרגל שלך? |
|
||||
|
||||
מוחקים את ה-"1" שסימן השכ"ג וכותבים במקומו e. |
|
||||
|
||||
נהדר. ועכשיו, איך תסמן "1" על הסרגל הזה? |
|
||||
|
||||
לא תסמן עליו "1". יש סרגל של E ויש סרגל של 1. |
|
||||
|
||||
אז שני הסרגלים הללו איזומורפיים, ושניהם מתעסקים במספרים רציונליים, רק שאחד מעמיד פנים שהוא לא על ידי זה שהוא קורא ל-"1" בשם "e". אם תרצה לדקדק, הרי שסרגל החישוב (זה שאני מכיר, שכופל ומחלק), במקום שיעבוד עם מספרים רציונליים, יעבוד עם כפולות רציונליות של e. מכיוון שעם סרגל החישוב של e לא יהיה לך מושג מה הערך של e, זה לא ממש משנה. מה שכן, הבנתי שיש סרגלי חישוב שאפשר לחשב בהם לוגריתמים (לא שאני יודע איך עושים את זה). מכיוון שהלוגריתם הטבעי של e הוא 1, נראה לי שכן צריך להיות מסוגלים לסמן 1 על הסרגל (וממילא שני הסרגלים שהוצעו לא איזומורפיים לפעולת הלוגריתם, כי הלוגריתם של 1 הוא 0). |
|
||||
|
||||
השאלה היא אם בסרגל החישובי מחשבים דווקא לוגריתמים ''טבעיים''. |
|
||||
|
||||
בזכות נוסחת המעבר בין הבסיסים, אני לא בטוח שזה משנה. (אגב, נראה לי שהמרכאות מיותרות - הלוגריתם ה''טבעי'' הוא באמת טבעי). |
|
||||
|
||||
כשנפגוש חייזרים אינטליגנטיים באמת, בטח יתברר שיש להם e אצבעות בכל יד. |
|
||||
|
||||
e אפשי. |
|
||||
|
||||
סליחה, מה זה? (את זה שזאת בדיחה הבנתי, אבל מה הפירוש המילולי המדוייק?) |
|
||||
|
||||
e=אי אי אפשי (בארמית) = אין רצוני, איני רוצה |
|
||||
|
||||
הה, אם כך למדתי משהו. חשבתי שזה ''אי אפשר'' בארמית. |
|
||||
|
||||
תודה. (התבלבלתי דווקא משום שלמדתי את הפירוש הנכון, בניגוד למה שהשוטה חשב) |
|
||||
|
||||
חוששתני שאז יתגלעו בינינו e הבנות. |
|
||||
|
||||
כמה e רציונלי מצידם. |
|
||||
|
||||
"הלוגריתם ה"טבעי" הוא באמת טבעי"? כלומר? |
|
||||
|
||||
הדוגמה הטובה ביותר שאני מכיר היא זו של הנגזרת: הנגזרת של הלוגריתם על פי הבסיס הטבעי (כלומר של lnx) היא אחד חלקי x. בכל בסיס אחר, הנגזרת הזו תוכפל בקבוע כלשהו. יתר על כן, הקבוע הוא בדיוק אחד חלקי הלוגריתם הטבעי של הבסיס האחר. |
|
||||
|
||||
נו כן, ל-e יש כמה וכמה תכונות מופלאות, אבל לא הייתי אומרת שזה הופך את הלוגריתם לפיה לטבעי. (אבל עזוב, זה סמנטיקה...):) |
|
||||
|
||||
אני כתבתי 1? למה שאכתוב 1? נשבע לך שכתבתי e ורק השדים האינטרנטיים שינו את זה. (טוב, יכול להיות שבזמן שכתבתי חשבתי על כך שבטח ישנו את יחידות האורך כך שאורכו של אטום החלל יהיה בדיוק 1 אלכסנדרוביץ' - אל תשאל אותי למה יבחרו דוקא את השם המשונה הזה - ואנחנו חוזרים לסרגל עם מס' רציונליים, כמו שאתה אוהב) |
|
||||
|
||||
אז אני אשאל את אותה שאלה ששאלתי כבר בהמשך הפתיל: אם סימנת e על הסרגל הזה, איך אתה מסמן עליו את 1? ואם אתה לא מסמן עליו את 1, מה בעצם עשית? |
|
||||
|
||||
אתה מסמן עליו "~1" שפירושו: המספר הכי קרוב ל 1 שאני מסוגל לסמן על הסרגל הזה. מה לעשות? אם יש לי עליו סקלה אי-רציונלית אני לא יכול לסמן עליה 1. מה שלא פחות חמור אפילו את פיי אני לא יכול לסמן שם (יש בטח הוכחה שהיחס בין פיי ואי אינו רציונלי). אבל אתה צודק, כל העסק לחלוטין לא רציונלי. בעולם דיסקרטי ניאלץ להסתפק בקירובים עבור מס' אי רציונליים אם אנחנו רוצים לסמן אותם במרחב, שכן ההתאמה היפה בין הממשיים לקו ישר אינה ניתנת להעתקה טובה על "קוים" פיזיקליים דיסקרטיים. מעשית זה לא ישנה כלום, כמובן, שכן אנחנו מדברים על גדלים קטנים מאד. |
|
||||
|
||||
לא נראה לי שיש ממש בעיה. אנחנו אמנם "צועדים" מספר אטומי חלל שלמים בין ראשית הצירים לבין e, אבל *המיקום* של כל אטום חלל נתון לעקרון אי-הודאות. משום כך, עלינו להגדיר את המיקום שלו בצורה אחרת - כזו שתביא לידי חשבון את ריכוז פונקציית הגל שלו. לדוגמה - מרכז האזור הרציף בו ערך האינטגרל על ריבוע פונקציית הגל (בקיצור - הסיכוי למצוא אותו שם) הוא 20^1-10. בקלות נגלה שקיבלנו מספר אי רציונלי בתור המיקום של אטום החלל, ויש לנו סרגל אי רציונלי (ומציאות דיסקרטית אבל בעלת גדלים אי רציונלים). |
|
||||
|
||||
בספרייה היו, אכן, הרבה יותר אי רציונליים מרציונליים. כפי שאמרתי לך, לא ראיתי בשום מקום שאלון הגביל את ''שוויון ההזדמנויות'' שלו בין הרציונליים לאי-רציונליים רק לאותם אי רציונליים שניתנים לחישוב. צריך לחשב גדלים של חללים, כמויות של חומרים, אורכים של כבישים... הרבה מאוד דברים, נראה לי. |
|
||||
|
||||
טוב, כל החישובים הללו הם של גדלים שמקורם בנתונים אמפיריים (ממדי החלל, הכמויות הראשוניות של החומרים, אורכים של מקטעים שונים בכביש), ומכיוון שאנחנו לא מודדים גדלים אי רציונליים, מן הסתם לא נתחיל עם מספרים אי רציונליים. מצד שני, אלון דיבר על חישוב של טרנספורם פורייה וכדומה, שבהחלט משתמש במספרים אי רציונליים בתור נקודת מוצא אנליטית. אני לא מבין גדול בתחום ולא יודע מה השימושים של טרנספורם פורייה, אבל שמעתי שמועה שהוא נפוץ בתחומים זניחים כמו הנדסת חשמל, למשל. |
|
||||
|
||||
וכנראה גם בתחומים זניחים לא פחות של השמיעה, מה שאומר שאפילו החתול שלי יודע לעשות חישובים כאלה! |
|
||||
|
||||
נאה. אבל כיוון שגם חישובי טרספורם פוריה (יהיה אשר יהיה) מחושבים, כפי הנראה לצרכים אמפיריים, הרי שמספרים הרלוונטיים לא יופיעו בו כמספרים אי-רציונליים - אלא כקירובים רציונליים שלהם. |
|
||||
|
||||
בחישוב טרנספורם פורייה, עד כמה שאני למדתי, מופיע לעתים קרובות פאי בתור קבוע נירמול, לא בתור חלק מנתוני הפונקציה שאת הטרנספורם שלה מחשבים. לכן החישוב הבסיסי כבר מסתמך על פאי. |
|
||||
|
||||
מה זה "קבוע נירמול"? |
|
||||
|
||||
זה טיפה טכני ואני לא בקיא לחלוטין בפרטים. הרעיון הבסיסי בטרנספורם פורייה הוא לייצג פונקציה באמצעות פונקציות "בסיסיות" - כאלו שמהוות מה שמכונה בסיס אורתונורמלי. בשביל זה צריך שהנורמה (האורך) של הפונקציות הללו (שהן איברים במרחב וקטורי) תהיה 1. לכן כופלים אותן בקבוע שמבטיח את האורך הזה. נראה לי שכאן העניין מוסבר יותר טוב משאני יכול להסביר: |
|
||||
|
||||
חישוב *נומרי*? לא, זה לא בניגוד אלי. |
|
||||
|
||||
את עדיין סבורה ש*יש* הבדל מהותי חישובי ו/או הכרתי בין הרציונליים לאי רציונליים? חשבתי הסכמנו כבר שראוי להחליף "רציונליים" ב"ניתנים לחישוב", או "ניתנים להגדרה", או משהו. אין שום דבר מיוחד בחישוב מסלול של חלליות; כל דבר ב"חיים הממשיים" המצריך שימוש במודלים מתמטיים (ויש כאלה פה ושם, את יודעת), סביר שיהיו בו חישובים ה"מתחילים" ממספר אי-רציונלי. אם הסכמת איתי שאין בשורש שתיים, או בפאי, שום דבר יותר בלתי-נגיש מאשר ב-65/536, אז למה זה נשמע לך כל כך לא סביר? אשר לדמיון שאת מציגה - עשינו את כל הסיבוב הארוך הזה וחזרנו לנקודת-ההתחלה: לא, אני לא רואה כל דמיון בין הטענות, לא לא-מקרי ואפילו לא מקרי. את טענה 1 אני, כאמור, לא ממש מקבל; טענה 2 היא טריוויאלית, ונדמה לי שאת קוראת בה יותר ממה שיש בה באמת. |
|
||||
|
||||
אלון, הרציונליות של מספר תלויה הרי רק בספרות שאחרי המליארד הראשונות, וחישובים (מכל סוג שהוא) מתחילים במספרים שיש להם מליארד ספרות עשרוניות ותו לא. על מה הדיון הזה, בעצם? |
|
||||
|
||||
ברור. אבל אם אני מבקש מ-Maple לעשות עבורי איזה טרנספורם פורייה, יש סיכוי לא קטן שאשים שם ממש ממש בהתחלה איזה פאי - פאי-פאי, לא את הרישא של הפיתוח העשרוני שלו - והתוכנה תמשיך לחשב איתו כפאי, סימבולית. אתה יודע, תחלק אותו בשניים, יצא פאי-חצי, תיקח סינוס, יצא *בול* אחד, כאלה דברים. על מה הדיון, נדמה לי: יש כאן טענה שבני-אדם מסוגלים "להכיר" רק מספרים רציונליים, ואם הם נגררים להשתמש באי-רציונליים זה רק בגלל שהחישוב הכריח אותם, לא כי הם רצו להתחיל ככה. ואח"כ יש טענה שזה קשור (באופן מקרי או לא מקרי) למוגבלות הידע האנושי. |
|
||||
|
||||
לא, לא הסכמנו. לפי מה חשבת? "כל דבר ב"חיים הממשיים" המצריך שימוש במודלים מתמטיים (ויש כאלה פה ושם, את יודעת), סביר שיהיו בו חישובים ה"מתחילים" ממספר אי-רציונלי." למשל? איזה? לא נשמע לי מאוד סביר "להתחיל" משורש 2. לא ידוע לי על בנייה שמתחילים אותה מהאלכסון. אשר לדמיון - כל אחד רואה דמיון בדברים אחרים. זה לא דבר מאוד מדעי. רק לא ברור לי מה, לדעתך, אני קוראת בטענה 2 מעבר למה שיש בה. |
|
||||
|
||||
כל פעם שמהנדס משתמש בטרנספורם-פורייה - וזה קורה בערך מיליון פעמים ביום, נניח כשבונים רכיב לעיבוד-אותות שיושב לך במערכת הסטריאו - החישוב שלו מתחיל עם פאי. ככה זה. כשלוקחים לוגריתם טבעי - נניח, כשעושים חישוב כלכלי מקורב עם ריבית-דריבית - יש שם e. על ההתחלה. כשארכיטקט מתכנן מלבן יפה, הוא לעיתים ישתמש בשורש חמש *ממש* מההתחלה, כצלע במלבן, לא כשהוא יחשב איזה אלכסון. כשמנתחים מעגל חשמלי שיש בו סליל או קבל, משתמשים ב-i (ההוא שהריבוע שלו מינוס אחת); מספר שהוא לא רק אי-רציונלי, הוא אפילו לא ממשי. זה קורה ממש ב"חיים הממשיים" (אלא אם חיים של מהנדס הם בעיניך לא חיים). עוד דוגמאות? אני לא בדיוק יודע מה את קוראת בטענה 2, אבל הקישור שלה לטענה 1 חורג ממידותיה. |
|
||||
|
||||
מה הצרה כאן? שהקבועים שאתה מדבר עליהם כאן הם פחות או יותר יחידת העילית של המספרים האי רציונליים. החוכמה היא שתביא דוגמה לשימוש יומיומי בחבר'ה שלא מככבים בנוסחת אוילר או פיבונאצ'י. למשל: מתי שווה לי להתחיל חישוב עם שורש עשרים ושלוש במקום עם 4.8? |
|
||||
|
||||
למה זו "צרה", ולמה זו "החוכמה"? איפה השופט, אני צריך לדבר איתו. חוץ מזה, "פאי" זה לא רק פאי, אלא גם כל כפולותיו הרציונליות (כשם שמישהו בוחר את 17/73 במקום את 1, הוא יכול לבחור את פאי כפול 17/73 במקום את פאי). למה חשוב למצוא עוד כאלה? בכל אופן, הרבה חישובים (אפילו כאלה שיצא לי לעשות) מתחילים מסינוס 36, לן 2, איזשהו ערך של פונקציית בסל, והערך של פונקציית האנטרופיה ב-1/3. באמת צריך עוד? |
|
||||
|
||||
מהי פונקציית האנטרופיה? |
|
||||
|
||||
-p*log(p)-(1-p)*log(1-p) log לפי בסיס 2.
|
|
||||
|
||||
תודה, אבל לא התכוונתי לפונקצייה אלא למשמעות. האם מדובר בקצב שלה? |
|
||||
|
||||
זו פונקציה בסיסית בתורת-האינפורמציה. יש לה כל מיני משמעויות - למשל, הקצב בו ניתן להעביר מידע בערוץ רועש. |
|
||||
|
||||
סינוס 36? למה דווקא 36? (רדיאנים או מעלות?) למרבה המזל אין כאן שופט, אבל אולי דווקא בגלל זה כדאי לנסות להימנע מחוקים נוקשים. אני חשבתי שהדיון הזה סובב סביב הטענה שבאופן כללי, מספרים אי רציונליים נפוצים פחות בשימוש אצלנו מאשר מספרים רציונליים, ושהמדד הוא לא מספר הפעמים שבהם משתמשים במספר מסויים, אלא מספר המספרים השונים שמשתמשים בהם. מצד שני, אני פחות או יותר בצד שלך בדיון הזה, ואני לא בטוח שהבנתי בעצמי מה בדיוק רוצים כאן. |
|
||||
|
||||
"נפוצים פחות בשימוש" - נו, על זה לא ממש כדאי להתווכח, לא? הטענה היתה, באיזשהו שלב: "*כל* חישוב של *כל* אחד לגבי *כל* עניין בחיים הממשיים מתחיל, כפי שאמרנו, ממספרים רציונליים - שהם מיעוט זניח מתוך הממשיים? (כלומר, *שום* חישוב כזה אינו מתחיל דווקא מאי-רציונליים)". ניסיתי לשכנע שזה לא ממש המצב. נראה שנכשלתי. למה 36? לא שיחקת אף-פעם בחצים ועפיפונים? (חוץ מכמה התחלקויות, פנרוז הזה דווקא בחור נבון). |
|
||||
|
||||
האם מהשורה האחרונה אני צריך להסיק שאתה חושב שאני מכיר מתמטיקה (או לחילופין, חצים ועפיפונים, או את פנרוז)? תודה, אני חושב שאני מוחמא. (אין לי מושג על מה אתה מדבר שם). |
|
||||
|
||||
...וגוגל מת? ויקיפדיה נשרפה? מרטין גרדנר נשכח מלב? תהיה נחמד, קנה את הספר האחרון וקרא אותו. איפה אתה חושב ללמוד מתמטיקה, באוניברסיטה? |
|
||||
|
||||
"חוץ מזה, "פאי" זה לא רק פאי, אלא גם כל כפולותיו הרציונליות". העניין הוא שכפולותיו הרציונליות, אם אינני טועה, הן רציונליות, לא? |
|
||||
|
||||
אה, למה חשבתי שהסכמנו: כי כתבת פעם "חוץ מכמה יוצאי-דופן בודדים אי-רציונליים", או משהו כזה. אז חשבתי לתומי שהסכמנו. ציינתי גם אח"כ שיוצאי-הדופן הללו הם לא כל כך בודדים. |
|
||||
|
||||
כמו שאלון אמר: זה קורה בכל ריבוע. זה נובע ישירות ממשפט פיתגורס. האלכסון הוא תמיד שורש של (X^2+X^2) וזה תמיד (שורש 2) כפול X. לכל אורך צלע X. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |