|
||||
|
||||
אני רוצה גם להגיב, ולהגיד משהו בכיוון של עומר (צמצום שמובא במאמר), אבל אחר. אני מקווה שהשפה לא קשה מדי. בס"ה הכול ברוח טובה, ואני שמח על המאמר. אם כי: יש לי בעיה ארוכת שנים עם מתמטיקאים: אני לא מבין מה הם אומרים.:) למדתי קצת על משפט גדל. אני לא מומחה גדול. אבל יש חשיבות למשפט הזה במובן הבא (ואלון – תקן אותי אם אני טועה) משפט גדל מראה שיש מערכות אקסיומטיות, שהם לא שלמות: קיימים בהם פסוקים שהם אמת על פי האקסיומות, אבל לא ניתן להוכיח אותם. כנראה (גדל לא הוכיח זאת, ואינני יודע עם הוכיחו) שיש המון כאלה. המון תורות, עם המון פסוקי אמת, שאי אפשר להוכיח. כל מדעי הטבע, פחות או יותר, בנויים כמערכות אקסיומטיות. בוודאי שכל המתמטיקה. ייתכן שיש דברים נכונים מאוד ורלוונטים מאוד, שלעולם לא יהיה ניתן להוכיח. כי אין להם בכלל הוכחה, למרות שהם נכונים. לפני גדל לא ידעו שדבר כזה בכלל ייתכן. אני חושב שההתמקדות במערכת סמלים, או לא מערכת סמלים, בשם מפוצץ כזה או אחר, פחות מעניינת. זה ה"צמצום" שאני מדבר אליו, והוא לא במקום. זה קורה לי כל הזמן, במאמרים של מתימטיקאים, זה גורם בעיקר לקושי בהבנת הרלוונטיות של הדברים. אתם מציגים את ההנחות, ואח"כ את המשפט בשפה מאוד מסובכת. וזהו. זה מספיק לכם. אל תשאירו אותנו באוויר. על מה לעזאזל אתם מדברים? למה דברים קשורים? למה זה רלוונטי? תנו דוגמא קלה , מודל פשוט, דוגמא נגדית, משהו. |
|
||||
|
||||
ראשית, הרשה לי לתקן אותך: משפט גדל לא אומר את מה שאתה אמרת. קיוויתי שאת מה שהוא כן אומר הבהרתי במאמר; אם אתה לא רואה את ההבדל בין מה שיש במאמר לבין הניסוח שלך, שאל. שים לב, למשל, שהמשפט לא אומר "יש מערכות כך ש..." אלא "כל מערכת המקיימת... מקיימת גם...". זה הבדל גדול. שנית, אין מושג כזה "אמת על פי האקסיומות". מה שנובע מאקסיומות הוא מה שניתן להוכיח מהן. "כל מדעי הטבע, פחות או יותר, בנויים כמערכות אקסיומטיות". אני לא מסכים - מהן האקסיומות של הביולוגיה המולקולרית? המושג לא ממש מתאים כאן. "ייתכן שיש דברים נכונים מאוד ורלוונטים מאוד, שלעולם לא יהיה ניתן להוכיח" - בוודאי. לעולם לא נוכל, למשל, להוכיח שמהירות האור אינה משתנה מאוד לאט, או שתורת היחסות משתנה מהותית בחלקים אחרים של היקום. זה פער חשוב מאוד בין מתמטיקה לפיזיקה: גם אם מקנים לתצפית אמפירית כלשהי מעמד של "אקסיומה", זה לא הופך אותה למוכחת; מחר נוכל לבצע תצפית שתערער עליה. זה נכון כמובן גם במתמטיקה, אלא ששם אפשר להסתפק באקסיומות שהן "סתם" סבירות, לא כאלה המבוססות על אמפיריקה. גם עליהן אפשר לערער, אלא שיש לנו סיבות אחרות לגמרי לעשות זאת. את כל זה ידעו הפיזיקאים גם לפני גדל. לאילו "שמות מפוצצים" אתה מתייחס? למה *מה* רלוונטי? מטרת המאמר הזה היתה להראות שתוצאה מסויימת במתמטיקה היא *פחות* רלוונטית ממה שמקובל לחשוב; אני מתקשה להדגים עבורך למה היא *כן* רלוונטית, בדיוק כי היא רלוונטית למערכות פורמליות במתמטיקה - אם זה "באוויר", אין לי יכולת לשנות זאת בעבורך. |
|
||||
|
||||
ראשית כשאמרתי: "כל מדעי הטבע בנויים כמערכת אקסיומטיות" לא התכוונתי כלל לכך שהוכחות אמפיריות דינם כהוכחות מתימטיות. לכן מה ניתן, או מה לא ניתן, להוכיח אמפירית, בכלל לא קשור לדיון כאן. ואני בטוח שאתה מסכים איתי. כן התכוונתי שכל מדעי הטבע, פחות או יותר, בנויים כמערכת אקסומטית. בטח תורת היחסות. בטח תורת הקוונטים. בטח ביולוגיה מולקולרית. כל זה ויכוח פחות מעניין, כי שנינו פה אומרים את אותו הדבר. אבל לא הבנתי כלל את המשפט שכתבת: "אין מושג כזה "אמת על פי האקסיומות". מה שנובע מאקסיומות הוא מה שניתן להוכיח מהן." אז כנראה שלא הבנתי בכלל את המאמר, או את משפט גדל. אני חשבתי שמשפט גדל אומר שיש פסוקי אמת שאין להם הוכחה. או בצורה שקולה - שיש פסוקים שאין הוכחה לא להם ולא לשלילתם. או יותר ספציפית: שאת המשפט "PA עקבית" אפשר לנסח בPA, ואי אפשר להוכיח לא אותו ולא את שלילתו. לא? |
|
||||
|
||||
"כל מדעי הטבע, פחות או יותר, בנויים כמערכת אקסומטית" - למה אתה מתכוון כשאתה אומר "מערכת אקסיומטית"? כן, יש טענות מסוימות שהמדעים האלה רואים כאמיתיות, אבל "אקסיומות" זו לא המילה המתאימה לתאר אותם. "אקסיומות" הן הנחות יסוד שלא זקוקות להוכחה, והכרחיות לצורך הוכחת טענות אחרות. הטענות שעליהן אתה מדבר אינן עונות על אף אחת מהדרישות. אלה פשוט "חוקים". יתרה מזאת, נניח שקיימת טענה פיזיקלית שלא ניתן להוכיח אותה מתוך חוקי היסוד, אבל כן ניתן להוכיח אותה באמצעות תצפית. אז מה? איזו השפעה יש למשפטי גדל על הפיזיקה? לא ניתן לומר ש-"ZFC עקבית אבל לא ניתן להוכיח את זה" 1, כי אנחנו לא יודעים ש-ZFC עקבית. הטענה הנכונה היא "אם ZFC עקבית, אנחנו לא יכולים להוכיח את זה". וכן, אין מושג כזה "אמת על פי האקסיומות". מה שנובע מאקסיומות הוא מה שניתן להוכיח מהן. "אני חשבתי שמשפט גדל אומר שיש פסוקי אמת שאין להם הוכחה. או בצורה שקולה - שיש פסוקים שאין הוכחה לא להם ולא לשלילתם." - שים לב לסתירה הפנימית בטענה ששני הניסוחים שקולים: הניסוח השני יוצר _סימטריה מוחלטת_ בין הטענה לבין שלילתה, ואתה טוען שהוא שקול לניסוח הראשון, על-פיו הטענה נכונה, ושלילתה לא! 1 השתמשתי ב-ZFC כי אאל"ט (ויש סיכוי טוב שאני טועה) ניתן להוכיח את עקביות PA ב-ZFC, כך שהעקביות של PA "אמיתית" אם ZFC עקבית. כשמשתמשים ב-ZFC הטיעון הרבה יותר ברור, אבל ההבדל, למעשה, סמנטי בלבד. |
|
||||
|
||||
בקשר לתיאוריות פיזיקליות: קשה לי להבין את מה שכתבת, ומה הבעיה (לדעתך) בכך שתיאוריות פיזיקליות מנוסחות ע"י אקסיומות. אז פשוט אתן דוגמא: יחסות פרטית: שתי אקסיומות. 1) כל מדידה, בכל מערכות הייחוס הנעות אחת יחסית לשנייה במהירות קבועה, ימדדו את אותם חוקי טבע. 2) אקסיומה (1) חלה לגבי משוואות מקסוול בכך שמהירות האור שווה בכל מערכות הייחוס. עכשיו, אפשר להתווכח האם התורה הזאת נכונה אמפירית או שאולי היא לא נכונה בכלל, או האם ישנם מקומות ביקומנו הקטן ומוקף האוייבים (רמז: ועוד איך ישנם!) שהאקסיומות לא נכונות, או לא רלוונטיות לגביהם. כל זה פיזיקה, והיא נורא חשובה, אבל על זה אנחנו לא מדברים בכלל. לגבי האופי המתימטי של התיאוריה, זה לא משנה כלום. כי מה שאי אפשר (לדעתי) להתווכח, היא שתורת היחסות הפרטית יוצאת משתי אקסיומות, ומהם היא מוכיחה את מה שהיא מוכיחה. תסלחו לי, אבל הוויכוח הזה הוא עקר. אני מציע שנתמקד בויכוח השני: "יש פסוקי אמת שאין להם הוכחה." "יש פסוקים שאין הוכחה לא להם ולא לשלילתם." שני הטיעונים שקולים לחלוטין, אם אתה מקבל את הנחת היסוד, שבהנתן הנחות יסוד מסויימות, כל פסוק הוא או פסוק אמת או פסוק שקר (ואז שלילתו הוא פסוק אמת). נשארת שאלה עקרונית והיא נורא חשובה: האם משפט גדל אומר שקיימות תורות עקביות, ובהן פסוקי אמת שאין להם הוכחה. |
|
||||
|
||||
מבחינת האינטואיציוניסטים, למשל, הטיעונים אינם שקולים: הם אינם מקבלים הוכחות על דרך השלילה. |
|
||||
|
||||
"כל פסוק הוא או פסוק אמת או פסוק שקר" - נכון, אבל לא נכון 1. אמנם, בכל מופע של האקסיומות, כל פסוק או נכון או לא נכון, אבל יש פסוקים שנכונותם לא שקולה עבור כל המופעים. לדוגמה, ע"פ האקסיומות של תורת החבורות, חבורה A (תחת כפל) מקיימת את החוקים הבאים: (0) סגירות (1) אסוציאטיביות (2) קיום יחידה (3) קיום הופכי לכל איבר האם A קומוטטיבית או לא? כמובן, שעבור כל חבורה A, הטענה הזאת היא נכונה או שאינה נכונה, אבל הנכונות שלה לא שקולה לכל המופעים. הטענה הזאת בלתי תלויה באקסיומות. בהנתן *רק* האקסיומות הכלליות של התורה, שאלת הקומוטטיביות אינה כריעה. בתורת המספרים, למשל, אנחנו מתעניינים למעשה במופע מסוים של אקסיומות פאנו, כי אנחנו מכירים את המספרים הטבעיים מהמציאות ויודעים (או לפחות חשים) שהם קיימים. לכן, כל טענה אריתמטית היא נכונה או לא, גם אם אינה כריעה. במובן הזה, אי הכריעות של "השערת גולדבך האקסיומטית" גוררת את נכונות "השערת גולדבך הטבעית". בתורת הקבוצות, לעומת זאת, אנחנו לא עוסקים במופע ספציפי. לכן אלון מצא לנכון להפריד את שתי התורות בתגובה 317241 מבחינת ה"קיום" של האוביקטים שבהם התורות עוסקות. האם אתה יכול לומר שהשערת הרצף או שלילתה "אמיתית"? 1 אתה מוכרח להודות שזה ניסוח נחמד. |
|
||||
|
||||
אבל אנחנו לא מדברים על זה, נכון? אנחנו מדברים על פסוקים שיש נכונות או להם או לשלילתם. האם לפסוקים כאלו יכול להיות שאין הוכחה? |
|
||||
|
||||
"במובן הזה, אי הכריעות של "השערת גולדבך האקסיומטית" גוררת את נכונות "השערת גולדבך הטבעית"." - נכון, אבל זהירות: לא כל פסוק אריתמטי הוא מהסוג הזה. אי-הכריעות של Twin Primes לא תגיד לך איזו משתי האפשרויות היא הנכונה. |
|
||||
|
||||
כמובן שאין לי מושג מה הולך כאן. כמה שאלות הבהרה: נניח שיש טענה (אוקי, פסוק) שהראו עליה שהיא לא כריעה. נניח שהפסוק הוא מהטיפוס " לא קיים טבעי כך ש בלה בלה". אם הפסוק היה שקר, אז על יד חיפוש מספיק ארוך הייתי יכול למצוא את הדוגמא הנגדית, מה שסותר את זה שהפסוק לא כריע, ולכן נובע שהפסוק הוא אמיתי. נכון? לא נכון? מצד שני, אם הפסוק הוא מהטיפוס " קיימים אין סוף טבעיים כך ש בלה בלה", אי אפשר להסיק (בשיטה הזאת) מהאי כריעות כלום. זה מה שהתכוונת להגיד? |
|
||||
|
||||
כמעט נכון. השאלה היא מה זה "בלה בלה". למשל, את Twin Primes אפשר לנסח כך: לא קיים טבעי כך שאין זוגות-ראשוניים בהפרש 2 מעליו. הנקודה היא שאם אני טוען שיש טבעי כזה, ואפילו מרחיק-לכת ונותן לך אותו (הנה, קח: 100^10^10), אין לך דרך סופית לבדוק אם הוא אכן מקיים את הדרישה. תוכל לחפש ראשוניים כאלה מעליו, אבל כל עוד לא תמצא, לא תדע אם להמשיך או להתייאש. בגולדבך זה לא כך: אם אני נותן לך מספר, אתה בקלות מוודא שהוא זוגי, ובקלות (כלומר, בתהליך חד-משמעי שיכול לקחת מיליארד שנים) בודק שהוא אכן לא סכום שני ראשוניים - מספיק להביט על הראשוניים הקטנים ממנו, ומספרם של אלה סופי. |
|
||||
|
||||
אני מאוד אוהבת את ה"קלות" הזאת. וכי מהן מיליארד שנים ביני ובינך? |
|
||||
|
||||
תודה. התלבטתי ביני לבין עצמי האם להוסיף משפט שאומר ש''בלה בלה'' פירושו משהו שאפשר לוודא במספר סופי של צעדים, אבל ויתרתי מתוך עצלות. אגב, אני לא יודע אם אמרו לך, אבל אחלה מאמר. |
|
||||
|
||||
מרוב עניין, שכחתי גם אני לומר לך כמה המאמר מרתק. עכשיו שראובן הזכיר זאת, אני אומרת - ומודה לך.:) |
|
||||
|
||||
ובהכללה: טענה שאם גרסתה ה"טבעית" אינה נכונה, ניתן להוכיח זאת מתוך המערכת האקסיומטית. |
|
||||
|
||||
אקסיאומה היא דבר שאתה מקבל כנכון ללא הוכחה, ובלא שניתן יהיה להוכיח או לשלול אותו. מהירות האור קבועה לכל צופה (לפחות עד כמה שהצלחנו למדוד), זו לא אקסיאומה, זו השערה שאומתה באינספור ניסויים, במידה וימצא מקום בו היא לא תקפה (בבטן של לוויתן שנופל לתוך חור שחור המתאחד עם חור לבן) אז פשוט נאלץ לכתוב השערות חדשות שיכללו את היחסות הפרטית כמקרה פרטי. גם 1) אינה אקסיאומה, אלא מסקנה על סמך הנסיון של מיכלסון ומורלי למדוד את מהירות כדור הארץ ביחס לאתר. |
|
||||
|
||||
בזמנו היה כאן פתיל עם דוגמא קונקרטית לטענה שהיא "טענת גדל", ולא ניתן להוכיח אותה במסגרת המערכת בה נוסחה, אבל ניתן להוכיח אותה במערכת אחרת (באמצעות שימוש באורדינלים). האם גם במקרה כזה יש סימטריה בין הטענה לבין שלילתה? |
|
||||
|
||||
האם התכוונת ל-Goodstein's theorem ? |
|
||||
|
||||
אכן. |
|
||||
|
||||
כן, גם פה יש סימטריה (אחרת היה אפשר לתת דוגמא נגדית גם ב-PA, ואי-אפשר). |
|
||||
|
||||
מבחינה פורמלית יש סימטריה בין הטענה ושלילתה. ההבדל נעוץ בכך שאנו מקבלים את האקסיומות של מערכת חזקה יותר (ZFC) כנכונות. מ-ZFC נובע 1 שהסדרות המוגדרות שם מתכנסות לאפס. 1 למעשה, ממערכות חלשות בהרבה. |
|
||||
|
||||
"אני חשבתי שמשפט גדל אומר שיש פסוקי אמת שאין להם הוכחה" - בהחלט. איפה יש כאן הביטוי "אמת על פי האקסיומות"? האמת לא תלויה באקסיומות, זו כל הנקודה. כאן, אגב, אני יוצא מנקודת-הנחה (שאני מניח שהיא סבירה בעיניך) שיש למספרים הטבעיים תכונות חד-משמעיות; אפשר להיות פורמליסט ולא להניח זאת, ואז "יש פסוקים שאין הוכחה לא להם ולא לשלילתם" זה *לא* שקול ל"יש פסוקי אמת שאין להם הוכחה". נחזור לניסוח המקורי שלך את משפטי גדל: "משפט גדל מראה שיש מערכות אקסיומטיות, שהם לא שלמות: קיימים בהם פסוקים שהם אמת על פי האקסיומות, אבל לא ניתן להוכיח אותם" כדאי להחליף זאת ב "משפט גדל מראה שלכל מערכת אקסיומטית (אפקטיבית ועקבית) הדנה במספרים הטבעיים, יש פסוקים שהם נכונים (במספרים הטבעיים) שהמערכת אינה מוכיחה". ההבדל ברור? |
|
||||
|
||||
ההבדל לא ברור לי עד הסוף. אולי אני אנסה ללכת איתך ולהיות מתימטקאי: כשאתה אומר "מספרים טבעיים" אתה מתכוון ליצורים שמוגדרים על פי האקסיומות הללו? כי אם כן, אז מה ההבדל בין הניסוחים? "יש פסוקים שהם נכונים (במספרים הטבעיים) שהמערכת אינה מוכיחה" "קיימים בהם פסוקי אמת על פי האקסיומות, אבל לא ניתן להוכיח אותה" ואם לא, אז מה הם "מספרים טבעיים"? אם תוכל לנסות להסביר לי עוד פעם אחת, אודה. |
|
||||
|
||||
כש*אתה* אומר "מספרים טבעיים", אתה מתכוון ליצורים שמוגדרים עפ"י אקסיומות כלשהן? אילו אקסיומות? אני חושב שאחד הנזקים שמשפטי-גדל יצרו הוא שהם גרמו לאנשים לחשוב שהם כבר לא יודעים מה זה המספרים הטבעיים, או שאין בדיוק דבר כזה בכלל. כשלעצמם, משפטי-גדל אינם מחייבים דבר כזה. למעשה, בלי שמניחים מראש את קיומם של הטבעיים, קשה אפילו *להגדיר* מה זה מערכת פורמלית, מה זו הוכחה פורמלית, וכו'. למשל, "הוכחה" היא שרשרת סופית של טענות (כך שכל אחת נגזרת מקודמותיה); מדוע זהו מושג פרימיטיבי יותר, או מובן יותר, או חד-משמעי יותר, מ"מספר" שהוא שרשרת סופית של הסימן |? ("שבע", למשל, זה |||||||). המספרים הטבעיים הם, פשוט, המספרים הטבעיים: 1, 2, 3, וכו'. אם ה"וכו"' הזה נראה לך מפוקפק - בסדר, אבל כאמור אתה צריך אז לשאול את עצמך, למה בכלל אתה מקבל את המושגים של מערכות אקסיומטיות, ולמה בכלל אתה מסכים שמשפט גדל *נכון*. -- בכל אופן, גם אם אני הייתי דווקא מנסה ללכת איתך ולומר שהטבעיים מוגדרים עפ"י איזושהי מערכת אקסיומטית, איזו משמעות היתה למונח "פסוקי אמת על פי האקסיומות" אם לא "מה שנובע לוגית מהאקסיומות"? אתה מנסה להציג מצב שאינו מובן לי, שבו יש מערכת אקסיומטית המגדירה את הטבעיים, ויש משפטים שהיא לא יכולה להוכיח, אבל משפטים אלה הם "אמת על פי האקסיומות". אם אי-אפשר להוכיח אותם, באיזה מובן הם "אמת על פי האקסיומות"? תוכל להסביר? |
|
||||
|
||||
כן: נניח שהטבעיים מוגדרים עפ"י איזושהי מערכת אקסיומטית. נניח שיש פסוק: "לא קיים מספר N המקיים את התכונות: A,B,C" (איזושהם תכונות) עקרונית, יכול להיות מצב שהפסוק הזה נכון. כלומר, שעל פי האקסיומות, באמת אין כזה מספר - לא תוכל פיזית לתת לי שום N שמקיים את התכונות האלו. אבל גם יכול להיות שלפסוק הזה אין הוכחה - אין שום טקסט סופי שמביא לוגית מהאקסיומות אל הפסוק. הפסוק פשוט נכון. בלי הוכחה. זה מה שטיורינג הביא. פסוק בדיוק כזה: "לא קיים מספר N המקיים את התכונות: A,B,C" "קיים מספר N המקיים את התכונות: A,B,C" והוא הראה שאם לאחד מהם יש הוכחה, אזי ניתן להכריע את בעיית העצירה. ככה אני למדתי את זה. דרך אגב - כשלמדתי את זה (פרופ טרסי) נעשתה הבחנה בין "פסוק" שיכול לקבל ערך אמת או שקר, לבין "משפט" שהוא "פסוק אמת שיש לו הוכחה". ואז משפט גדל אמר: ישנם פסוקי אמת שהם אינם משפטים. אני טועה במשהו? |
|
||||
|
||||
לא, רק אולי לא מדייק. מה פירוש "לא תוכל פיזית לתת לי שום N שמקיים את התכונות האלו"? *פיזית*? אתה מדבר על פסוקים מטיפוס מסויים האומרים "כל N מקיים X" כש-X היא תכונה הניתנת לבדיקה סופית. הנקודה היא שהסוג הזה של "בדיקה סופית" -מה שקראת לו "לתת פיזית" - הוא גרעין המשותף לכל המערכות האקסיומטיות המדברות על הטבעיים; אם אין להן את הגרעין הזה, לא נגיד עליהן שהן מדברות על הטבעיים. במובן זה, ההכפפה של "לתת פיזית" ל"על פי האקסיומות" היא מטעה. לבדיקה הפיזית הזו יש משמעות אבסולוטית. למשל, השערת גולדבך (שהיא גם פסוק מהסוג שתיארת) אומרת: לכל מספר זוגי, יש שני ראשוניים שהוא סכומם. ההשערה הזו אינה נכונה בדיוק כאשר יש מספר זוגי שאיננו סכום של שני ראשוניים; אין כאן שום "על-פי האקסיומות". בכל אופן, "ישנם פסוקי אמת שהם אינם משפטים" זו בדיוק הסיפא של הניסוח *שלי* את משפט גדל, בתגובה 317410. יש עדיין ויכוח על משהו? |
|
||||
|
||||
הויכוח רק מתחדד יותר ויותר, לדעתי. אלך עם הדוגמא שלך: נניח שמישהו ימצא הוכחה לשלילה של השערת גולדבך. מה זה "הוכחה לשלילה של השערת גולדבך"? זה טקסט, שתחילתו באקסיומות (כלשהם) שמדברות על הטבעיים. המשכו בהגדרה "מספר ראשוני" ו - "מספר זוגי". המשכו בנתינת המספר הראשוני- P. והמשכו (למשל) בפלט של תוכנית מחשב שבודקת כל זוג שני מספרים זוגיים הקטנים מP, ומראה שאף סכום של אחד מהזוגות אינו P. הדוגמא שנתת, ונתתי, לעיל, היא ללא ספק דוגמא למשהו שהוא אמת על פי האקסיומות. אני לא מבין איך אתה יכול להגיד שההוכחה היא "לא על פי האקסיומות"? איזה הוכחה בעולם כולו היא "לא על פי האקסיומות"? אני לא מבין איך אתה יכול להגיד "פסוק הוא אמת אבסולוטי" בלי קשר לאקסיומות כלשהן? אולי יש לך דוגמא למשהו שהוא אמת, בלי שום קשר לאקסיומות כל שהן? |
|
||||
|
||||
למה צריך בראשית הטקסט שלך "אקסיומות שמדברות על הטבעיים"? איזו רמה של ודאות אבסולוטית היית מוצא אם במקום להתחיל מ-"6=1+5, ו-1 ו-5 אינם ראשוניים" היינו מתחילים עם אקסיומות פאנו? הרי בשביל לנסח בכלל את אקסיומות פאנו, צריך (בשביל אקסיומת האינדוקציה) את המושג של "פסוק כלשהו P מסדר ראשון בשפה". אתה סבור שהמושג הזה הוא יותר ברור-אבסולוטית מהמושג "מספר טבעי"? ברצינות? למה? אני לא יודע אם יש "אמת אבסולוטית", אבל מה שאני יודע הוא שהמושג "המספרים הטבעיים" הוא ראשוני וחד-משמעי יותר מהמושג "מערכת אקסיומות" ו"הוכחה פורמלית". דוגמה למשהו שהוא אמת: אפס איננו העוקב של אף מספר טבעי. בהרבה מערכות אקסיומטיות של הטבעיים אנחנו בוחרים לציין את זה בתור אקסיומה; אתה חושב שזה הופך את זה ליותר אמיתי? איך "אמת אבסולוטית" יכולה להיות בכלל קשורה לאקסיומות כלשהן? ואם הייתי מניח (אקסיומטית) ששש שווה לשבע, ומוכיח לך (פורמלית) שעשרים-ושבע שווה לשלושים, זה היה הופך את זה ל"אמת אבסולוטית"? המושג שלנו של "אמת" *קודם* למערכות פורמליות, לא נגזר מהן. זו עמדה עקבית לגמרי לומר "אני לא מאמין לכלום, אין אמת, רק טענות מסוג אקסיומות-->מסקנות פורמליות". בסדר, זו גישה פורמליסטית, ואין לי שום דבר נגדה. אבל לא ברור לי איך גם נוקטים בגישה הזו וגם מדברים על "אמת". |
|
||||
|
||||
סליחה שאני עונה לך פעמיים, אבל חשבתי על עוד דרך להדגים את הבעייתיות בגישה שלך. במקום גולדבך, חשוב על השערת ה-Twin Primes: יש אינסוף זוגות ראשוניים שההפרש ביניהם 2. נניח שאתה עובד במערכת אקסיומות כלשהי, ומוכיחים לך ש-TP אינה כריעה מהאקסיומות. אתה מבקש לנסח זאת באופן הבא: "יש משפט אמיתי שהוא לא יכיח", כש"אמיתי" זה "אמיתי על-פי האקסיומות". בגולדבך, יכולת לעשות זאת: יכולת לטעון שאם גולדבך *לא* נכונה, אז יש לעובדה הזו הוכחה מהאקסיומות - מספר ספציפי שאפשר להוכיח לגביו שהוא סותר את גולדבך. זה נכון, אבל פה עם TP אתה לא יכול לעשות זאת. איזה משני המשפטים הוא אמיתי על-פי האקסיומות? TP או לא-TP? באף אחד משני המקרים אין "דוגמה נגדית" שאתה יכול לוודא את אמיתותה בעזרת האקסיומות שלך. לכן, יש לך שתי ברירות. או להישאר אגנוסטי, לומר ש-TP אינה נכונה ואינה לא-נכונה, כי אי-אפשר להכריע פורמלית. זו עמדה לגיטימית, אבל הניסוח שלה בתור "יש משפט אמיתי שהוא לא יכיח" הוא עכשיו לא נכון: מיהו המשפט האמיתי, ולמה הוא אמיתי "על פי האקסיומות"? ברירה אחרת היא להחזיק בדעה (שאני מחזיק בה) ש-TP היא באמת נכונה או באמת לא נכונה במספרים הטבעיים; זה שמערכת אקסיומות מסויימת לא מסוגלת להראות זאת זו חולשה של האקסיומות ותו לא. זה יהיה מטריד מאוד אם לא נוכל למצוא אקסיומה נוספת, סבירה, שתכריע בשאלה הזו, אבל אפילו זו לא סיבה חד-משמעית לקבוע שאין ל-TP ערך-אמת. גדל, אגב, החזיק בדעה כזו אפילו לגבי תורת-הקבוצות: אם השערת-הרצף אינה כריעה, אז חסרה אקסיומה. במקרה הזה זו טענה הרבה יותר חזקה ו"מסוכנת", ואני בכלל לא בטוח שאני מסכים איתה (וכך גם הרבה מתמטיקאים ולוגיקאים). המספרים הטבעיים עצמם, מסדר ראשון, זה (לתחושתי) עולם אחר - אבל ברור לי שאין משפט מתמטי, גדל או אחר, המראה זאת. |
|
||||
|
||||
זה כבר חידוש גדול (אולי תחליף לעניבה אפורה). אם המספרים הטבעיים הם "יצורים טבעיים" ואינם תלויים (באמת) במערכת אקסיומטית, אז לכל משפט (מסדר ראשון) עליהם יש ערך אמת "טבעי"? זה נראה לי מרחיק לכת. למה שהטיעון הזה לא יחול על משפטים מסדר שני? (הטענה "לכל משפט מסדר ראשון יש ערך אמת" בפני עצמה "חזקה" יותר מכל משפט מסדר שני, גם אם אולי לא באופן פורמלי: היא מדברת על משפטים מסדר ראשון ולא על קבוצות). |
|
||||
|
||||
מה זה "משפט מסדר שני"? משפט על משפטים? |
|
||||
|
||||
משפט על קבוצות שאותן אפשר להגדיר בעזרת משפטים מסדר ראשון. |
|
||||
|
||||
סליחה על הטרחנות, אבל אפשר דוגמא? |
|
||||
|
||||
"לכל קבוצה A של מספרים, אם לכל x ו- y ב- A מתקיים ש- x-y שייך ל- A וגם לכל x ב- A ולכל z מתקיים ש- x*z שייך ל- A, אז קיים d השייך ל- A, כך שלכל מספר x, מתקיים ש- x שייך ל- A אם ורק אם קיים מספר c כך ש- x=c*d". (זה הנוסח הארוך ל"חוג המספרים הוא תחום ראשי"). את רוב הטענות המעניינות במתמטיקה אי-אפשר לנסח בשפה מסדר ראשון, כי היא מאפשרת לדבר רק על האובייקטים עצמם ולא על קבוצות שלהם. ובלי קבוצות אין פונקציות, אין יחסים, והעולם בכלל אפור ומשעמם. |
|
||||
|
||||
>את רוב הטענות המעניינות במתמטיקה אי-אפשר לנסח בשפה מסדר ראשון, כי היא מאפשרת לדבר רק על האובייקטים עצמם ולא על קבוצות שלהם. ובלי קבוצות אין פונקציות, אין יחסים, והעולם בכלל אפור ומשעמם. טוב, זה כבר תלוי בצורה שבה אתה בשמתמש בלוגיקה פורמלית. את כל1 הטענות במתמטיקה אפשר לנסח בשפה של תורת הקבוצות (שהיא מסדר ראשון). אתרוב הטענות המענינות על אוביקטים 2 אי אפשר לנסח בשפה מסדר ראשון שמתארת את אותם אובייקטים. 1 כמעט. 2 שהם לא קבוצות. |
|
||||
|
||||
מרוב קיצור נוצר קצר. התכוונתי להגיד: "את רוב הטענות המעניינות במתמטיקה (של תורת המספרים) אי-אפשר לנסח בשפה מסדר ראשון של תורת המספרים" - אם מותר להגיד רק "לכל מספר" ו"קיים מספר" ואסור "לכל קבוצה של מספרים" ו"קיימת קבוצה של מספרים" ו"קיימת קבוצה של קבוצות של מספרים", אז העולם אפור וגו'. |
|
||||
|
||||
תודה.:) נשמע משכנע. גם החיים משעממים ואפורים בלי קבוצות, פונקציות ויחסים. תמיד אמרתי. |
|
||||
|
||||
בוודאי, ולכן זו לא טענה שכדאי לנסות להוכיח; זו סתם דיעה. למה שהטיעון לא יחול על משפטים מסדר שני? כי המושג "קבוצה שרירותית של טבעיים" הוא מעורפל, מסיבות ידועות. למה זה טיעון כזה מרחיק לכת? אתה באמת מניח באופן אינטואיטיבי שטענות כמו TP יכולות להיות תלויות במערכת-האקסיומות שנבחר לעבוד איתה? שוב, אין לי דרך להגן על התיזה הזו, וגם לא רצון רב - זו סתם תחושתי. אין לה השפעה כלשהי על נכונות או אי-נכונות של טענות אריתמטיות. היא גורמת לי להניח ש-PA, וכן החלק האריתמטי של ZFC, הן נאותות; בכך אני לא חושב שאני יוצא-דופן במיוחד, וברור לי (כמו לכולם) שלא ניתן להוכיח את העובדות הללו במערכות המתאימות. |
|
||||
|
||||
(פילוסופית,) אין לי ספק בנאותות של PA (ואפילו ZF). אבל קודם טענת משהו אחר: שכל פסוק מסדר ראשון באקסיומות פאנו הוא או נכון או שאינו נכון - בלי תלות באקסיומות. מצד שני, אנחנו יודעים שיש פסוקים ש(בהנחת העקביות) אי-אפשר להוכיח ב- PA. כלומר שבעיניך המודל הוא "האמת", ומערכת פאנו היא רק מערכת אקסיומות חלקית לאמת. לזה התכוונת? |
|
||||
|
||||
רק לוודא שאנחנו מדברים על אותו דבר: לא לגמרי ברור לי מה זה "פסוק מסדר ראשון באקסיומות פאנו". פסוק מסדר ראשון יש בשפה; השפה של האריתמטיקה בנוייה מהסימנים המוכרים, ואקסיומות פאנו הן מערכת אחת מבין הרבה מערכות אחרות הרשומות בשפה הזו. כן, אני סבור שפסוק מסדר ראשון בשפה של האריתמטיקה הוא נכון-או-לא, ומה אפשר-או-אי-אפשר להראות ב-PA נראה לי כמו עניין צדדי. למשל, (Con(PA הוא פסוק אריתמטי כזה, ואני בטוח שהוא נכון - מה דעתך? אתה סבור שאולי לא? |
|
||||
|
||||
כן, התכוונתי ל"פסוק מסדר ראשון בשפה של האריתמטיקה". אני מסכים שהשאלה מה אפשר להראות ב- PA לא מעניינת. ZF היא המערכת הנכונה, ואני מוכן לעבור ל- ZFC בלי למצמץ. אבל יש משפטים אריתמטיים שלא ניתן להכריע ב- ZFC, ובדרך כלל אני לא רואה שום סיבה לצרף אותם (או את שלילתם) למערכת האקסיומות. העקביות של PA היא דוגמא די סינגולרית - בזה אני מאמין מספיק כדי לצרף אותה כאקסיומה... (מט באלף-אפס מסעים?) |
|
||||
|
||||
1. יש לך דוגמה למשפט אריתמטי כזה, שאתה אגנוסטי לגביו? 2. (להקדים תרופה) לגבי דידי, המשמעות של משפטים כאלה היא לא שהם גם לא נכונים וגם לא לא-נכונים, אלא שהם אחד מהשניים, ואנו חסרים את הכלים לבדוק. 3. איך אתה מפרש את הטענה "ZF היא המערכת הנכונה"? מדוע, ומה פירוש "נכונה"? ומה מניע אותך לקבל גם את C? לי נראה שיש פה תהליך קבלת-החלטות שההטלה שלו על N מהווה (גם היא) קריטריון לקבלה/דחייה, ע"י שכל תולדה של ההטלה הזו מעומתת עם מה שאנו קוראים לו "האמת לגבי הטבעיים". אם אין אמת כזו, איך מתחילים? |
|
||||
|
||||
1. אין לי דוגמאות, אבל א) אני יודע שיש כאלה, ב) זכור לי במעורפל משהו על גירסה של משפט רמזי (צבעוני?) שהיא בלתי כריעה ב- ZFC. 2. אני מוכן להסתכן בתעוקה קלה בחזה של האלמוני, ולהגיד שדעתי די הפוכה. מבחינתי משפטים שאי-אפשר להוכיח או להפריך ב- ZFC הם כנראה חסרי תוכן-אמת, ואני מוכן לשקול אותם על בסיס פרטני. למשל, את העקביות של PA אני מקבל כאקסיומה. משפטים פחות מעניינים - אולי אני בכלל לא רוצה להחליט לגביהם. 3. מה הולך לאיבוד אם יש משפטים (מוזרים מאד, יש להודות) באריתמטיקה שאין להם תוכן אמת? עדיין אפשר "להטיל" משפטים ל- N, ולדאוג שלא נקבל תוצאות שקר. ב- C אני מאמין כי אם יש צדק בעולם, אז מכפלה קרטזית אינסופית צריכה ללכת ולגדול, ולא להעלם פתאום. (אבל בקשר לסעיף 2 - אין מספיק צדק בעולם בשביל להכריע בכל הטענות האריתמטיות). |
|
||||
|
||||
1. ודאי שיש כאלה; משפט גדל מבטיח לך זאת. מה שמעניין אותי היא השאלה הבאה: אם תשתכנע, או שיוכיחו, ש- Twin Primes היא לא כריעה ב-ZFC, האם זו תהיה סיבה מספיק טובה עבורך לזנוח את האמונה שהסדרה 3, 5, 7, 11, 13, 17, 19, 29, 31, ... היא או סופית או אינסופית? "אם יש צדק בעולם", הייתי אומר, היא או זה או זה. 2. אין (לי) (כמובן) כל בעייה עם זה. אבל דווקא העמדה הזו, נראה לי שיותר קשה להגן עליה: ההכרעה הפרטנית נולדת משיקולים שהם, כנראה, קצת מעורפלים. 3. שום דבר לא הולך לאיבוד. טעמי האישי הוא שחד-משמעיות משפטים מסדר ראשון על N היא עובדה מוצדקת אף יותר מאקסיומת הבחירה. מכפלות קרטזיות שלא נעלמות נותנות לי שני תפוזים לבנות מהם שמש, זה צדק זה? מצד שני, כאמור, סדרות פשוטות שלא יודעות להחליט אם הן סופיות או לא, זה כבר נראה לי ממש נבזי. |
|
||||
|
||||
נדמה לי שהגישה הזו נוגדת את משפט גדל עצמו. אם יש מספרים טבעיים 'אמיתיים', אז אפשר להתייעץ איתם בכל פסוק אריתמטי. אפשר לערוך רשימה של כל המשפטים הנכונים (מסודרים לפי אורך), ולצרף את כולם לאקסיומות פאנו. המערכת הזו חזקה מספיק (כוללת את אקסיומות פאנו), עקבית (כי היא מדברת על ''העולם האמיתי''), ושלמה (כי אספנו את כל המשפטים). זה משאיר רק את סדק האפקטיביות. |
|
||||
|
||||
נכון מאוד. קוראים לזה True Arithmetic, וכפי שציינת זה לא נוגד את משפט גדל - סדק זה סדק. בגרסה הראשונה של המאמר אפילו הזכרתי את התורה הזו כדוגמה לתורה לא אפקטיבית, אבל נבונים ממני יעצו לי ש-Here be dragons. עוד שאלה פילוסופית: למה היכולת שלנו להכריע בשאלה מסויימת מכתיבה את דעתנו על קיום תשובה חד-משמעית לשאלה? אני אגנוב דוגמה מדיוויד גייל: "לקליאופטרה היה סוג דם A" הוא משפט שלא נוכל לדעת לעולם אם הוא אמת או שקר (אלא אם תתחולל איזו סנסציה), אבל לא נראה שזה משנה את דעתנו שאו שהיה לה סוג דם A, או שלא. היחס שלי למשפטים שאינם כריעים ב-ZFC הוא דומה. |
|
||||
|
||||
אם כך, למשפט גדל יש מסקנה פילוסופית: אם מניחים שקיים מודל "טבעי" למספרים הטבעיים (וכך לכל פסוק מסדר ראשון בשפה האריתמטית יש ערך אמת טבעי - והוא או אמת או שקר), אז לפי המשפט אין דרך אפקטיבית לגלות את ערך האמת הזה. זה לא מבטל את ההבדל בין העמדה הזו לבין האלטרנטיבה (יש משפטים בלי ערך אמת), אבל בעיני זה הופך אותו להרבה יותר קטן. מלבד זה, האם לדעתך יש ערך אמת טבעי לכל פסוק שאפשר לנסח בשפה של תורת הקבוצות, כאשר הוא מתייחס למספרים (וקבוצות של מספרים, וקבוצות של קבוצות של מספרים, ואתה רואה לאן אני חותר)? |
|
||||
|
||||
"אין דרך אפקטיבית לגלות את ערך האמת הזה": וודאי - זה לרוב מכונה בשם "משפט טרסקי". זו לא (רק) מסקנה פילוסופית, אלא משפט מתמטי מדוייק, בתנאי שאתה מסכים שיש דרך לנסח אותו בכלל - זה, אם אני לא מחמיץ משהו, מחייב אותך להסכים שיש דבר כזה "אמת". ניסוחים מסוג זה הם מקובלים למדי, עד כמה שראיתי; אפשר למצוא כאלה בספרים שהזכרתי (Boolos, Jeffreys, Burgess או Franzen, למשל). אני לא בטוח שהבנתי את השאלה בסוף - אילו פסוקים בשפה של תורת הקבוצות מתייחסים למספרים? אני מניח שיש ערך אמת טבעי לכל פסוק שיש בו +, *, >, =, 0, ', A ו-E ותו-לא, אם כי אני בוודאי מקבל *הוכחות* המבוססות על אקסיומות מתוחכמות יותר מ-PA. כפי שאמרתי (וזו בוודאי לא המצאה מקורית שלי), המושג "קבוצה שרירותית של מספרים" הוא בפירוש יותר מעורפל. |
|
||||
|
||||
נשמע שאתה בהחלט מצדד בגודסטיין, לא? |
|
||||
|
||||
אני לא בטוח שהבנתי. השאלה היא האם אני מאמין שסדרות-גודסטין תמיד שואפות ל-0? בוודאי. אי-אפשר להראות זאת ב-PA, אבל נראה שיש הסכמה כללית ש*זה* לא אומר הרבה על "האמת". |
|
||||
|
||||
התבלבלתי, כמובן. אני מתכוונת לגולדשטיין.:) |
|
||||
|
||||
אה. אז שוב לא הבנתי - באיזו אמירה שלה אני מצדד? אם הכוונה לקטע בו הסבירה שמשפט גדל מחזק את הגישה הפלטוניסטית, אז דווקא לא (את הגישה הפלטוניסטית לאריתמטיקה מסדר ראשון אני מקבל, אבל לא *בגלל* גדל). |
|
||||
|
||||
חשבתי שזה כן מתקשר לטענתך שמשפט גדל מוכיח שיש משפטים שנכונותם/מופרכותם אינן נובעות מהאקסיומות, לא? |
|
||||
|
||||
אבל משפט גדל לא מוכיח את זה, אלא למי שמסכים מראש שיש דבר כזה "נכונותם/מופרכותם". משפט גדל אומר ש(עבור כל מערכת אקסיומות המקיימת... )יש משפטים אריתמטיים שאי-אפשר להוכיח ואי-אפשר להפריך במערכת. פרשנות א': יש משפטים שאין להם בכלל ערך-אמת; הם לא נכונים ולא לא-נכונים. פרשנות ב': כל משפט הוא נכון או לא-נכון, אלא שכל מערכת אקסיומות היא חלשה מכדי להוכיח את כל הנכונים ולהפריך את כל הלא-נכונים. הויכוח בין שתי הפרשנויות נותר בעינו (כמובן) גם אחרי גדל, ולכן לא ברור לי הטיעון שגדל מקנה משקל יתר לפרשנות ב' (פלטוניזם אריתמטי). בכל אופן, אם השאלה היא האם אני פלטוניסט-אריתמטי - התשובה היא "כן" (לפחות עד שאורי או עוזי ישכנעו אותי אחרת. אני לא נעול על הגישה הזו). |
|
||||
|
||||
בתגובתך ליזהר אתמול אמרת, "האמת לא תלויה באקסיומות, זו כל הנקודה." ואני התייחסתי לתפיסה *שלך* את משפט גדל. בכל אופן, כמו שאמרת (כאן ובדיון אחר, דומתני) - אתה "עדייו" פלטוניסט, לפחות בנוגע לטבעיים. כעת, הרגעת אותי בטענה שאלה לא מאכלסים עד התפוצצות איזה מחסן במעלה החמשה, אבל לא אמרת כלל באיזה מובן הם קיימים בעינייך. אתה יכול להגדיר את זה? |
|
||||
|
||||
אני חושב שכבר הגדרתי, אבל שוב: אני סבור שכל טענה מסדר ראשון על הטבעיים היא נכונה, או שהיא לא נכונה. זה הכל. האם בעקבות זאת יש לומר שהטבעיים "קיימים"? לא יודע. |
|
||||
|
||||
אם אתה אדם ולא מכונת טורינג, סדק האפקטיביות לא צריך להטריד אותך. |
|
||||
|
||||
האם אתה יכול להציג בפני קבוצת אקסיומות ו/או כללי היקש, כך שאני אוכל להכריע לגבי כל טענה חשודה האם היא אקסיומה או כלל היקש, והיא אינה ניתנת לחישוב 1? 1 כלומר, שפה ב-R. |
|
||||
|
||||
כדאי שתשאל אדם, ולא אותנו, מכונות הטורינג. |
|
||||
|
||||
"מכפלות קרטזיות שלא נעלמות נותנות לי שני תפוזים לבנות מהם שמש," את השירה הזאת אי אפשר להפסיק... מה ההמשך? |
|
||||
|
||||
עוד 2-3 אקסיומות ונתחיל לבנות את מכונת הטיורינג המתאימה. |
|
||||
|
||||
והפיוט, מה יהיה עליו? |
|
||||
|
||||
אלון מתיחס לפרדוקס בנך-טרסקי: |
|
||||
|
||||
בכלל לא קישרתי את "מכפלה קרטזית אינסופית נותנת קבוצה לא-ריקה" עם אקסיומת הבחירה. אבל למה שמש? מכפלה קרטזית שלא נעלמת נותנת שני תפוזים לבנות מהם תפוז. וכן, זה ניסוח מאוד פיוטי. |
|
||||
|
||||
"למה שמש?" - לא יודע אם אתה שואל ברצינות, אבל כן: משפט ב"ט מאפשר לחלק תפוז (או שניים) למספר סופי של חלקים, לסובב ולהזיז, ולבנות שמש. |
|
||||
|
||||
בגרסה שאני מכיר, המשמעות היא שניתן לחלק כדור למספר סופי של חלקים, לסובב ולהזיז, וליצור שני כדורים זהים לו. זו גם הטענה שמופיעה בויקיפדיה (בקישור לעיל). |
|
||||
|
||||
ובאינדוקציה... |
|
||||
|
||||
השמש היא אוסף סופי של תפוזים? |
|
||||
|
||||
לא, אבל אפשר לבנות אותה מהם ע"י פירוק לחלקים, סיבובים והזזות; כיוון שיש לה אותו נפח כמו למספיק תפוזים, זה דווקא החלק הפחות מפתיע בסיפור. |
|
||||
|
||||
אחח, אם רק האלכימאים היו יודעים את זה... |
|
||||
|
||||
זה נשמע הגיוני, אבל לא הייתי בטוח, כי זה לא ממש ברור לי שאת הכדורים ניתן לחבר לכדור גדול פי 2. אבל אם אתה אומר שזה אפשרי, אני מקבל את זה כאקסיומה 1. 1 אם את *כל* מה שאתה אומר אני מקבל כאקסיומה, ואתה אכן מכונת טיורינג, מתקבלת מכך תורה אפקטיבית. נשמע נחמד :). |
|
||||
|
||||
אל תקבל שום דבר כאקסיומה, בטח לא ממני... ההוכחה של משפט ב"ט היא ממש לא קשה, ולא דורשת שום דבר מעבר לקצת השכלה מתמטית שנראה לי שיש לך. החלק הכי קשה הוא ההוכחה שחבורת הסיבובים במרחב מכילה חבורה חפשית, וזה דווקא החלק שהכי קל לקבל אינטואיטיבית. יש ספר מאוד נחמד של Stan Wagon על המשפט הזה. |
|
||||
|
||||
מה זה "חבורה חופשית"? |
|
||||
|
||||
(הערך בויקי העברית מזעזע, לתשומת לב אלו שמבינים משהו). |
|
||||
|
||||
תודה.:) |
|
||||
|
||||
אני אנסה להציל את כבודי האבוד כמרצה-ברוחו שאוהב לתת תשובות עם תוכן. "חבורה" - אוסף של דברים (לא חשוב מה; לרוב נקראים "איברים") שאפשר לכפול אותם ("כפל" זו מכונה שלוקחת שני איברים ומחזירה איבר); אחד האיברים מתנהג כמו "1" (כלומר, כשכופלים בו X כלשהו, יוצא X); ולכל אחד מהאיברים יש הופכי (כלומר לכל X יש איזשהו Y כך ש-XY הוא ה-"1" הזה). חבורה חופשית היא חבורה שבנויה באופן הבא (בהגבלה קלה של הכלליות): לוקחים כמה אותיות, נניח שתיים (A ו-B); מוסיפים שתי אותיות שתהווינה הופכיות לשתי אלה (נניח a ו-b); ומגדירים חבורה שהאיברים שלה הן "מילים" באותיות האלה, כשאסור לאות להופיע ליד ההופכית שלה. ABabAA זה בסדר, BaA זה לא. הכפל מוגדר ע"י זה שרושמים את שתי המילים בזו אחר זו, ואז מצמצמים אם אפשר לצמצם: בכל פעם שרואים Aa או aA או Bb או bB, מעיפים את צמד האותיות הללו והמילה מתקצרת. למשל: ABa * AbA = ABaAbA = ABbA = AA (שתי המילים באמצע החישוב הזה הן רק תוצאות ביניים; הן לא מקיימות את האיסור על הופכיות צמודות כי עוד לא גמרנו לצמצם). אפשר לראות שמתקבלת חבורה: "1" זו המילה הריקה שאין בה בכלל אותיות, וההופכית של מילה מתקבלת ע"י זה שהופכים את סדר האותיות ומחליפים כל אות בהופכית שלה.החבורה הזו נקראת "חופשית" כי האיברים שלה לא מקיימים שום "יחס" חוץ ממה שמתחייב מחוקי החבורה. 0=2+3-2-3, למשל, זה יחס לא טריוויאלי בחבורה של המספרים השלמים עם חיבור. |
|
||||
|
||||
תודה. הבנתי כבר את הרוב מהוויקיפדיה, רק לא מדוע החבורה נקראת ''חופשית''. |
|
||||
|
||||
היא חופשית מיחסים. בחבורות שאינן חופשיות יש יחסים שאומרים משהו על היוצרים של החבורה (למשל, ש- ababab=1). |
|
||||
|
||||
כן, תודה. התכוונתי שזה החלק שאלון השלים לי אחרי הוויקיפדיה... |
|
||||
|
||||
אולי כדאי לציין שה''מכונה'' הזאת אינה בהכרח מכונת טיורינג. |
|
||||
|
||||
חשבתי (באיחור) ש''מכונה'' היא אכן ביטוי לא מוצלח כאן. |
|
||||
|
||||
מרצה שלי (אי שם בשנות השמונים) סיפר פעם שבתואר ראשון הוא חזר הביתה וניסה להסביר לאמו את עניין התפוזים והשמש. אמא שלו אמרה רק: אם אלו השטויות שמלמדים אתכם באוניברסיטה, אולי עדיף שתמצא עבודה. |
|
||||
|
||||
נחמד :-) יש כמה דברים כאלה, שאפשר לספר לאמא ולקבל המלצה על שינוי כיוון. הגדרה: "עקום" במרחב הוא תמונה רציפה של הקטע [0,1] (כשמסבירים את זה לאמא, עושים כזו מין תנועה באוויר עם האצבע - מתחילים *פה*, עושים ווש-ווש-ווש, ומסיימים *פה*) משפט: קובייה היא עקום (וגם כדור, צלחת, אקליפטוס ומסננת). שם למשפט (אורי, זה בשבילך): Hahn-Mazurkiewicz. |
|
||||
|
||||
"Hahn-Mazurkiewicz" נשמע בערך כמו "מחול החרבות". |
|
||||
|
||||
זה לא עקום פאנו? (בלי שום קשר לאקסיומות פאנו פרט לאב הרוחני, עקום פאנו הוא מסילה רציפה שמכסה את ריבוע היחידה). |
|
||||
|
||||
כן, חוץ מזה שכאן הוא מכסה קוביה. משפט ה"מ הוא הכללה של הבנייה הקונקרטית של פאנו, והוא נותן את התנאי המדוייק ב-R^n לקבוצה להיות עקום (משהו כמו קומפקטית וקשירה מסילתית, לא זוכר בדיוק; הקטע הוא שכל קבוצה העונה על שתיים-שלוש תכונות פשוטות שברור שיש לעקומים היא אכן עקום, ו"מימד" הוא לא אחת מהתכונות הללו). |
|
||||
|
||||
"עקום" הוא *כל* תמונה רציפה של הקטע [0,1]? |
|
||||
|
||||
כן (למה השאלה?) |
|
||||
|
||||
פשוט לא הבנתי. וזה גם לא הוגן. חלק מהתמונות הן בטח ישרות להפליא... |
|
||||
|
||||
הגדרות מתמטיות הן נורא לא הוגנות. ''עקום'' יכול להיות ישר, ''ישר'' יכול להיות עגול, ''עיגול'' יכול להיות כדור ו''כדור'' יכול להיות פירמידה. ''קבוצה פתוחה'' יכולה להיות גם ''קבוצה סגורה'', ''קומפקטי'' יכול להיות בגודל של גלקסיה, ''טור'' כותבים בשורה ול''גבעול'' אין אף-פעם שיבולת, גם כשהוא ב''אלומה''. כאמור, עדיף לחפש מקצוע אמיתי. |
|
||||
|
||||
אתם ממש לא רציניים. |
|
||||
|
||||
גבעולים ואלומות? מאיפה זה? |
|
||||
|
||||
גאומטריה דיפרנציאלית אאל''ט. |
|
||||
|
||||
"Sheaf" and "Stalk" (scheme theory, algebraic geometry, some algebraic topology.)
|
|
||||
|
||||
ומה זה fiber bundle? אגד סיבים? |
|
||||
|
||||
אם כך bundle bundle זה אגד חבילות? |
|
||||
|
||||
מה זה, "והיה הישר לעקום"? לא הגזמתם? אנשים נורמליים משתמשים לפעמים במכבסת מלים. אבל אתם הולכים על לכלוך? תתביישו! |
חזרה לעמוד הראשי |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |