|
"אין דרך אפקטיבית לגלות את ערך האמת הזה": וודאי - זה לרוב מכונה בשם "משפט טרסקי". זו לא (רק) מסקנה פילוסופית, אלא משפט מתמטי מדוייק, בתנאי שאתה מסכים שיש דרך לנסח אותו בכלל - זה, אם אני לא מחמיץ משהו, מחייב אותך להסכים שיש דבר כזה "אמת". ניסוחים מסוג זה הם מקובלים למדי, עד כמה שראיתי; אפשר למצוא כאלה בספרים שהזכרתי (Boolos, Jeffreys, Burgess או Franzen, למשל).
אני לא בטוח שהבנתי את השאלה בסוף - אילו פסוקים בשפה של תורת הקבוצות מתייחסים למספרים? אני מניח שיש ערך אמת טבעי לכל פסוק שיש בו +, *, >, =, 0, ', A ו-E ותו-לא, אם כי אני בוודאי מקבל *הוכחות* המבוססות על אקסיומות מתוחכמות יותר מ-PA. כפי שאמרתי (וזו בוודאי לא המצאה מקורית שלי), המושג "קבוצה שרירותית של מספרים" הוא בפירוש יותר מעורפל.
|
|