|
למה צריך בראשית הטקסט שלך "אקסיומות שמדברות על הטבעיים"? איזו רמה של ודאות אבסולוטית היית מוצא אם במקום להתחיל מ-"6=1+5, ו-1 ו-5 אינם ראשוניים" היינו מתחילים עם אקסיומות פאנו? הרי בשביל לנסח בכלל את אקסיומות פאנו, צריך (בשביל אקסיומת האינדוקציה) את המושג של "פסוק כלשהו P מסדר ראשון בשפה". אתה סבור שהמושג הזה הוא יותר ברור-אבסולוטית מהמושג "מספר טבעי"? ברצינות? למה?
אני לא יודע אם יש "אמת אבסולוטית", אבל מה שאני יודע הוא שהמושג "המספרים הטבעיים" הוא ראשוני וחד-משמעי יותר מהמושג "מערכת אקסיומות" ו"הוכחה פורמלית".
דוגמה למשהו שהוא אמת: אפס איננו העוקב של אף מספר טבעי. בהרבה מערכות אקסיומטיות של הטבעיים אנחנו בוחרים לציין את זה בתור אקסיומה; אתה חושב שזה הופך את זה ליותר אמיתי?
איך "אמת אבסולוטית" יכולה להיות בכלל קשורה לאקסיומות כלשהן? ואם הייתי מניח (אקסיומטית) ששש שווה לשבע, ומוכיח לך (פורמלית) שעשרים-ושבע שווה לשלושים, זה היה הופך את זה ל"אמת אבסולוטית"? המושג שלנו של "אמת" *קודם* למערכות פורמליות, לא נגזר מהן.
זו עמדה עקבית לגמרי לומר "אני לא מאמין לכלום, אין אמת, רק טענות מסוג אקסיומות-->מסקנות פורמליות". בסדר, זו גישה פורמליסטית, ואין לי שום דבר נגדה. אבל לא ברור לי איך גם נוקטים בגישה הזו וגם מדברים על "אמת".
|
|