בתשובה להאייל האלמוני, 19/04/05 15:09
ללא כותרת 294294
אם הוא האמין בזה, כנראה לא היה איכפת לו לחזור בתור זומבי, שכן הוא נתן אישור לד''ר תומס הרווי לנתח את מוחו.
ללא כותרת 294295
את זה ליבוביץ לא נתן לעשות. 1:1 בינתיים, אני חושב.
ללא כותרת 294304
ליבוביץ שמר את המצוות, ולכן לא תרם את גופו למדע. איינשטיין לא שמר את המצוות כפי שאנו מגדירים זאת.
אם ניתן להשוות, זאת ההשוואה והיא לרעת איינשטיין.
ללא כותרת 294307
ההשוואה היא לטובת איינשטיין, שלא נתן לקובץ של חוקים דתיים חסרי טעם ומשמעות לבלבל אותו - ותרם למדע בחייו וגם במותו.
ללא כותרת 294346
איינשטיין לא תרם את גופו למדע. גופתו נשרפה ואפרו פוזר כפי שדרש (הוא סלד מפולחן האישיות סביבו ולא רצה להשאיר אחריו אתר עליה לרגל). בניגוד לדרישותיו, פיסות ממוחו נלקחו ע"י Dr. Thomas Stoltz Harvey, במהלך הניתוח שלאחר המוות.
ללא כותרת 294354
ללא כותרת 294382
מסתבר שיש יותר מגירסה אחת לגבי "האם איינשטיין הסכים לזה או לא?". התשובה "לא" נשמעת, לדעתי, הרבה יותר קונסיסטינטית עם אופיו (כפי שהוא מתואר בביוגרפיות שונות). החינגה הזאת, סביב המוח, ניראת לי בדיוק כמו המשהו שאיינשטיין חשש ממנו ושהוביל אותו לדרוש את שריפת גופתו.

זה לא עונה על השאלה, אבל:
מוחו של איינשטיין 294880
אכן, הרוואי הפר את צוואת איינשטיין, תרתי משמע, במהלך הניתוח שלאחר המוות. ולימים התברר במחקר שמוחו של איינשטיין היה גדול יותר מגודלו של מוח אנושי סטנדרטי.
מוחו של איינשטיין 294971
למעשה, מבחינת משקל, מוחו של אינשטיין היה קטן יותר מהממוצע (1230 גרם לעומת 1400 גרם בממוצע אצל גברים). ההבדלים שכן נמצאו הם באזורים ספציפיים של המוח: קפל אחד היה חסר, שני אזורים היו גדולים יותר מהממוצע, קליפת המוח הייתה דקה יותר, אבל דחיסות הנוירונים גדולה יותר. מסקנות סופיות: אין. המחקרים שנערכו הם בעיתיים מבחינה מתודולוגית, ובשורה התחתונה אף אחד לא יודע אם היכולת המנטלית של איינשטיין נובעת מהבדל פיסיולוגי במבנה המוח, או מהבדל בהתארגנות של הנוירונים בתוך מוח שהוא, באופן כללי, רגיל.
מוחו של איינשטיין 294983
אגב, מהי בעצם "היכולת המנטלית של איינשטיין"? אין ספק שהוא היה אדם מבריק, אבל אנשים מבריקים היו רבים, הן במאה ה-‏20 והן במאות שקדמו לה, למרבה המזל. הוא גם לא היה חסין מטעויות, לא פתר את השערת רימן (או הוכיח את המשפט האחרון של פרמה) וכדומה. כלומר - בתוך ליגת הגאונים (להבדיל, אולי, מליגת ה"מחשבים אנושיים", שדווקא אצלם הרבה יותר מעניין איך המוח שונה מזה של אדם רגיל) הוא לא נראה לי חריג יותר מדי, מה שהופך דווקא את המוח שלו לנושא מחקר מעניין. האם פספסתי משהו?
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 294984
הוא לא פתר את השערת רימן ולא הוכיח את המשפט האחרון של פרמה, אולי כדאי לזכור שהוא לא היה מתמטיקאי. בליגת הגאונים הפיזיקאים של המאה העשרים (והתשע עשרה, והעשרים ואחת עד היום) הוא היה הטוב מכולם.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 295006
אבל בדיוק זו ההצהרה הבומבסטית שאותה אני מנסה להבין: למה הוא "היה הטוב מכולם"? איך מבצעים את ההשוואה הזו? למה איינשטיין כן ובוהר לא?

ושוב, האם יש טענות שהמוח שלו עבד בצורה לא רגילה (כמו "מחשבים אנושיים") או שהוא סתם היה פיזיקאי תיאורטי מעולה?
ריכוז הכוחות כמפתח להצלחה 295022
==> "למה הוא "היה הטוב מכולם"? איך מבצעים את ההשוואה הזו? למה איינשטיין כן ובוהר לא?".

לאחר שתצפיות אסטרונומיות אישרו את תורת היחסות, הפך איינשטיין למעין סלבריטי גרמני ובינלאומי. כבר אז ניסה להדוף חלק מן התהילה. למושג "גאון" תהודה עמוקה יותר בשפה הגרמנית מאשר בשפות אחרות; הוא מבטא משהו שכמעט אינו מן העולם הזה. איינשטיין כינה את התיאורים העיתונאיים המופרזים "בדותות משעשעות". שבועיים לאחר ההכרזה הפומבית כתב ב"טיימס" הלונדוני שאף-על-פי שהגרמנים כינו אותו בגאווה 'גרמני' והאנגלים כינו אותו 'יהודי-שווייצרי', אם יוכח אי-פעם שתחזיתו בתורת היחסות שגויה, ייהפכו היוצרות...

==> "האם יש טענות שהמוח שלו עבד בצורה לא רגילה (כמו "מחשבים אנושיים") או שהוא סתם היה פיזיקאי תיאורטי מעולה?"

הרב הפרופ' אברהם קושלבסקי ז"ל, מהמחלקה להנדסה גרעינית באוניברסיטת בן-גוריון בנגב, מספר בספרו "מפגשים בין יהדות, מדע וטכנולוגיה" (ירושלים, תשס"א):

"בקוראי את הביוגרפיה של אלברט איינשטיין התרשמתי שאמנם נכון כי איינשטיין היה כישרוני ביותר, אך כישרונותיו המתמטיים לא היו יוצאי דופן בהשוואה למדענים אחרים מהשורה הראשונה. למרות זאת, היה זה דווקא איינשטיין שהגיע להישגים אדירים, וזכה למעמד של אחד מגדולי המוחות המדעיים שקמו לאנושות לאחר ניוטון וגאון שחולל מהפכה בפיזיקה המודרנית. ומה שהביא אותו לכך היא היכולת שהיתה לו לרכז את כל הכוחות המחשבתיים, הידע והאינטלקט, ולמקדם בבעיה אחת.
"בביוגרפיה זו מתוארת פגישה שנערכה בין איינשטיין לג'ופי אשר בא לבקר אותו בשנות העשרים במעונו בברלין. ג'ופי מספר שהיא ביקש להתייעץ עם איינשטיין על תיאוריה שפיתח בתחום הגבישים. הוא הגיע אליו בבוקר, והם התחילו לדבר והמשיכו שעות ארוכות, כאשר איינשטיין קולט במוחו את החומר ומעבד אותו. רמת הריכוז היתה כבר קשה עבור ג'ופי עצמו, אף שהיה בקי בנושא, אך איינשטיין המשיך לשמוע ולטחון את החומר עד שתיים בלילה, ורק אז אמר שהוא חושב שהבין את הדברים וסיים את השיחה. ג'ופי מסכם שבחייו הוא לא עבר חוויה כה אינטנסיבית של חשיבה, כפי שחווה באותה שיחה עם איינשטיין, ושהוא יצא ממנה סחוט לחלוטין.
"הנקודה שצריכים אנו ללמוד מכל האמור היא שאם ברצוננו להגיע להישגים גבוהים, עלינו למקד את כל כוחותינו במה שאנו עושים – במדע, בעבודה, ובעיקר בקיום המצוות ובלימוד התורה".
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 295024
איך מבצעים את ההשוואה? מאמינים למומחים. מי המומחים לעניין? פיזיקאים תיאורטיים מצטיינים אחרים. להם יש בדרך כלל אינטואיציה טובה להעריך "כמה קשה היה לעלות על זה", או "עד כמה אני, אילו הייתי אז, הייתי רחוק מלעלות על זה"; ואני מנחש שפיזיקאים תיאורטיים שונים די יסכימו (הרבה יותר מהטלת מטבע (-:) על ההבחנות האלו. המדריך שלי בקורס פיזיקה לנוער שוחר מדע - אז סטודנט שנה ג', היום מרצה, ובמקרה או לא שם משפחתו הוא רוזן - אמר שתורת היחסות הפרטית לא צריכה להיחשב לגאונית במיוחד: אם איינשטיין לא היה עולה עליה, מישהו אחר היה עושה זאת די מהר. ואילו היחסות הכללית כן הצריכה גאונות של ממש.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 295595
רק שלא יאשימו אותי שאני לא מסוגל לכתוב תגובה בלי מרכאות.

מרק כץ פעם אמר (על פיינמן כמובו):
"
There are two kinds of geniuses: the "ordinary" and the "magicians." An ordinary genius is a fellow whom you and I would be just as good as, if we were only many times better. There is no mystery as to how his mind works. Once we understand what they've done, we feel certain that we, too, could have done it. It is different with the magicians. Even after we understand what they have done it is completely dark.
"
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 295600
ישנה גם הגישה ההפוכה: גאון אמיתי הוא מי שאחרי שגילה את התגלית כולם דופקים את המצח בקיר בתסכול ואומרים "שיט, זה כל כך ברור, איך לא חשבתי על זה בעצמי"?.

הדוגמאות הקלאסיות הן דארוין ואיינשטיין (גם האפקט הפוטו אלקטרי וגם תורת היחסות הפרטית. הרי הטרנספורמציה של לורנץ היתה ידועה לכל).
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 295610
המנחה שלי נהג להשמיץ את המבקרים של מאמריו על ידי כך שהוא היה מסכם את מכתבי "ביקורת העמיתים" שהוא קיבל באופן הבא:

1) התוצאה טריויאלית.
2) התוצאה לא נכונה.
3) עשיתי את זה קודם בעצמי.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 295623
יש משהו דומה על התגובות לתיאוריה חדשה באשר היא (אבל בסדר אחר. זה מתחיל מ''לא נכון'' ונגמר ב''טריויאלי''). לא זכור לי הציטוט המדויק.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 295639
אולי אתה מדבר על "חמשת השלבים"?
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 295711
אולי.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 295738
תגובה קצת יותר מפורטת ל"ביקורת עמיתים" באקדמיה (מצחיק ומומלץ):

אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 295750
תגובה 285823
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 295739
נראה לי שהשאלה האמתית היא לגבי גדל, למשל. הרי כל הכלים הרלוונטיים היו כבר כ-‏50 שנה לפני משפט אי השלמות.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 295852
אני ממש לא מסכים עם הקביעה הזו.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 295856
עם איזה חלק שלה אינך מסכים?
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 295871
"הרי כל הכלים הרלוונטיים היו כבר כ-‏50 שנה לפני משפט אי השלמות". (לא חייבים לדון בנושא הנידח הזה בפרהסיה, אם את/ה מעדיפ/ה אפשר בדואל).
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 295886
נידח? אתה בטח צוחק. אנשים כאן מגלים עניין בהוכחות מתמטיות של ממש, אז שלא יתענייננו בהגיגים על הרגע המכונן של יסודות המתמטיקה? אני למשל, התגובה הראשונה שלי היתה "לא יכול להיות", ואז ניסיתי לחשוב על זה קצת, ולהבנתי המוגבלת יצא ש"כל הכלים הרלוונטיים" זה בערך לוגיקת הפרדיקטים כפי שפרגה פיתח אותה. בדקתי תאריכים, וגיליתי שאכן עברו חמישים שנה בין "כתב המושגים" של פרגה ל"על טענות שאינן..." של גדל. אילו דברים שהתגלו בדרך הם כלי עבודה מהותיים בטיעון של גדל? בפרט, ה"פרינקיפיה" של ראסל ווייטהד לא נראית לי מהותית, למרות שהטענה של גדל היא לכאורה רק תשובה לה.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 295889
תקופת ה 50 שנה היתה אחת מתקופות החושך בהם לאנשים היו הזיות ובמקום ללמוד וללכת לרופא הם האמינו בניסים והשתתפו ב ‏1. רק כאשר האנושות התבגרה והפסיקה להאמין באסטרולוגיה, יכל גידל לאסוף את מה שהיה מתחת לפנס ולנסח את המשפט בן האלמוות שלו.

1 איך אומרים ברבים דו קרב?
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296035
"איך אומרים ברבים דו קרב?"

קרבות בשניים? מערכות דו-קרב? דו קרבות (בטוח לא)?
מלחמה 296036
מלחמה 296037
חוכמולוג.
המלבין פני חברו. ברבים: 296045
המלבינים פני חבריהם.‏1

דוקרבים (על משקל עורכדינים).
___
1 ד"ר מלכיאל זוארץ ז"ל, אלא מי?
המלבין פני חברו. ברבים: 296050
דו-קרב במקרה של הזוג הקלאסי.
דו-דו-קרב במקרה של רביעיה.
דו-דו-דו-קרב במקרה של שמיניה.
וכן האלה (ניתן לסמן ב- דו^x-קרב).

במקרה שמדו-בר במספר אנשים שאיננו חזקה של שתיים, זורקים את האנשים העודפים לנהר (או שמזמינים אותם, אחד אחד, לדו-קרב).
המלבין פני חברו. ברבים: 296078
אתה מתכוון לחזקה או למכפלה?
בכל מקרה, כשמדובר ב-‏70 זוגות המונח הנכון הוא עקרבים.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296065
אם הכוונה היא להתמודדויות שכל אחת מהן היא דו קרב (ולא התמודדות בה משתתפים מספר גדול של אנשים), הצורה הנכונה היא דו קרבות (בשחמט משתמשים בצורה הזאת הרבה).
קרבות ביניים 296051
קרבות ביניים 296110
יפה. תודה.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 295929
"נידח": לא צוחק, סתם עושה שימוש דבילי במילה. אפילו אוף-טופיקיסט חסר-בושה כמוני הרגיש שאנחנו כבר נסחפים, אבל האמת? אז מה.

לענייננו: אני לא חושב שה"כלים" של הוכחה הם הדבר עליו היא מדברת, אלא המכשירים בהם היא עושה שימוש. הדרך בה פירשתי את הטענה היא שהכלים הדרושים להוכחת משפט גדל כבר היו שם, והוא רק בא ויישם את הכלי המתאים במקום הנכון. דברים כאלה בהחלט קורים בהוכחות מתמטיות, ולעיתים מדובר בהוכחות גאוניות באמת. במובן הזה הטענה נראית לי שגויה; משפט גדל מדבר *על* מערכות פורמליות, אבל ה*הוכחה* שלו איננה משתמשת ב"כתב המושגים" או בפרינקיפיה כ*כלי*.

במה כן? הכלי העיקרי בהוכחה הוא, כמובן, מספור-גדל, וזה לא היה קיים 50 שנה או 5 שנים או 5 דקות לפני שההוכחה פורסמה (חוץ מאשר בתוך ראשו של גדל עצמו). גדל המציא כלי אמיתי חדש; זה נדיר, וכשזה קורה נראה לי מוזר לטעון שכל הכלים היו שם עוד קודם.

יתרה מזו: 50 שני לפני משפט גדל, כל התפיסה המטא-מתמטית לא היתה ממש קיימת. לקח זמן להפוך את המבנים הלוגיים מעזרים להבנת התהליך המתמטי למבנים מתמטיים ראויים למחקר בפני עצמם. גם לזה הייתי קורא "כלי", עמוק ויסודי, שהיה דרוש כדי להפוך את ההוכחה של גדל לאפשרית בכלל, ואת זה דווקא לא עשה גדל לבדו. במילים אחרות: לפני הילברט, סקולם, לוונהיים, צרמלו ואחרים, קשה בכלל להעלות על הדעת את גדל מוכיח מה שהוכיח (לא שזה מתקבל מאוד על הדעת גם ב-‏1931, אבל בכל זאת).
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 295990
ודאי לא התכוונתי לטעון ש"הכלים הדרושים להוכחת משפט גדל כבר היו שם, והוא רק בא ויישם את הכלי המתאים במקום הנכון." ועוד פחות מזה ל"רק" (בכל זאת יש גבול, לא?:)). בדיעבד אני גם מגלה שההקשר לתגובתי וניסוחה היו אולי מבלבלים: רציתי רק לתהות על השאלה איך זה שאיש לא עשה זאת קודם.
ואגב, האם יש שימושים ניכרים ל"כלי" המספור שלו?
הדלתה שלי- 295998
זמן הבשלה. לא מספיק שהמונחים כבר קיימים. צריך לתרגל אותם עד שהם מוטמעים כאינטואיציה.
הדלתה שלי- 296020
נראה לי שבדרך כלל זמן ההבשלה איננו כה ארוך. זה הסיבה דווקא לחשוב שיש כאן משהו אחר - הייחוד של גדל.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296047
בספר Adventures of a Mathematician (טל הזכיר אותו כבר כמה פעמים באייל) כתב סטן אולם שג'ון פון-נוימן, חברו הקרוב, "אכל את עצמו" שלא היה זה הוא שהוכיח את המשפט - כנראה שהוא עבד בסביבה, והיה יחסית קרוב.

(לא עונה לך על השאלה, אבל יחסית קשור.)
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296052
ובכל זאת נראה שגדל היה גדול עליו.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296054
מההקדמה של T. Gowers לספרו החדש "Mathematics: a very short introduction":

... I have done without anecdotes, cartoons, exclamations marks, jokey chapter titles, or pictures of the Mandelbrot set. I have also avoided topics such as chaos theory and Godel's theorem, which have a hold on the public imagination out of proportion to their impact on current mathemaical research...

והוא מתגאה בכך? 296055
אחר כך מתפלאים למה מתמטיקאים הם חכמים אבל לא עשירים.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296137
בדיוק המשפט שגרם לי להתאהב בספר. מומלץ בחום.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296205
אבל למה להימנע ממשפט גדל? גם בלי ההשפעה שלו על המתמטיקה (הייתה כזו? אין לי מושג), הרעיון שמאחוריו, ובפרט ההוכחה שלו (ומספור גדל עצמו) הם מאוד יפים (לפחות מה שלמדתי - את החלק הטכני באמת המרצה החביא בתור "קופסא שחורה").
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296206
מי אמר שהם לא יפים? הספר של גאוארס קטן מאוד (בכוונה), ויש הרבה מאוד דברים יפים שלא נכנסו אליו. הנקודה שלו (שוב אני מסביר את כוונתו) היא שהוא מניח שהקורא ממילא מתעניין במתמטיקה כך שהוא לא צריך להתאמץ ולרגש אותו בכוח תוך שימוש בטריקים הסטנדרטיים של כותבי ספרי מתמטיקה פופולרית. הוא מנסה לדבר על דברים אחרים.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296223
אני לא חושב שיש משהו רע ב"טריקים" האלה (חבורת מנדלברוט היא די יפה, אם כי גם הדיוט כמוני רואה שגם קבוצת קנטור מעניינת ומשום מה עליה מדברים הרבה פחות בספרים שמזכירים פרקטלים) - האם לדעתך יש? בכל מקרה, התעניינתי.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296226
יש פשוט כבר מספיק מהם. העולם לא מוכרח עוד ספר עם ציור של *קבוצת*‏1 מנדלברוט.

1 :-)
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296273
מאיפה באמת השתרש הביטוי "חבורת" מנדלברוט? אני זוכר שתהיתי עליו בעצמי, והנה אני משתמש בו בלי לשים לב (אולי כי אני לא שולט לגמרי בהגדרה הפורמלית שלה). האם היא כן מהווה חבורה, או שזה פשוט תרגום קלוקל של Set של אנשים שלא בקיאים במינוחים מתמטיים?
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296290
לא שמעתי את הביטוי "חבורת מנדלברוט" מעודי, אז קשה לי לענות על השאלה. אתה בטוח שהוא השתרש? (קבוצת מנדלברוט לא מהווה חבורה בשום מובן שאני יכול לחשוב עליו).
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296296
על פי מבחן גוגל - כן. 10 מופעים ל"חבורת מנדלברוט" ורק 9 ל"קבוצת מנדלברוט". אחד המופעים היה בכיתוב התמונה של קבוצת מנדלברוט בויקיפדיה העברית (תוקן כעת).
מבחן גוגל 296317
Mandelbrot Group: 28

Mandelbrot Set: 97,000

מבחן גוגל 296323
תוכל בבקשה להרחיב קצת על המובנים והתרגומים.

group = חבורה?
מבחן גוגל 296327
חבורה (group) היא מבנה אלגברי שבו יש אוסף של איברים (קבוצה) עם פעולה ("חיבור" או "כפל"), מתקיים חוק הקיבוץ, יש איבר נייטרלי, ולכל איבר יש הופכי. קבוצה (set) זה אותו דבר בלי כל החלק המעניין (אין פעולה, אין קיבוץ‏1, אין נייטרלי, אין הופכי).

1 עד פה זה נשמע כמו משהו של הצופים.
מבחן גוגל 296328
(ודרך אגב, דובי: אני מתנצל על כל זה. זכור את תגובה 295871).
מבחן גוגל 296364
אין בעיה. אני דווקא נהנה. ממה שאני מבין, לפחות.

(המממ... זכור את תגובה 295871 לקודשו... אגב, שמת לב שאוטוטו אנחנו מגיעים ל-‏300,000 תגובות?)
מבחן גוגל 296375
שמתי. הטרגדיה היא שבערך אחוז מהן שלי.
מבחן גוגל 296332
תודה. פשוט בעברית לא מתמטית קבוצה היא group, אם איני טועה.
מבחן גוגל 296335
אני חושב שאתה לא מדייק, אבל מזמן שכחתי עברית לא מתמטית.
מבחן גוגל 296401
לא יודע אם הצופים מתאימים כאן. אבל בחלק מהשיעורים בתורת החבורות נהגתי לחשוב שאדם מבחוץ שהיה נכנס לשם היה מניח שמדובר בסוציולוגיה: חבורות ימניות, חבורות שמאליות, אידיאלים... אפילו לפילטרים אפשר למצוא איזה הסבר כזה (דחוק, אמנם).
מבחן גוגל 296476
תגובה 234820.
מבחן גוגל 296336
לא באנגלית - בעברית. כאמור, לדעתי הטעות נובעת מתרגום שגוי של המילה Set, כי הדיוטים לא בהכרח מבדילים בין "חבורה" ו"קבוצה".
מבחן גוגל 296337
הבנתי, הבנתי, נו... (וזה ''הדיוטות'').
מבחן גוגל 296403
לא אתפלא אם הטעות הזאת התחילה מתרגום של ורדה ויזלטיר לאיזה ספר בתורת הגשטלט שהופיע בו פרק על תורת החבורות שתרגום כתורת הקבוצות. לקח לי כמה דקות להתאפס על הטעות ולהתחיל לקלוט.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296489
אני נתקלתי ב"חבורת מנדלברוט" הרבה פעמים, וזה אכן תרגום קלוקל של Set. מתרגמים יודעים להתייעץ עם מומחה לבוטניקה כשהם צריכים לתרגם שמות של צמחים, ואם היו יודעים להכליל את השיטה הזו לתחומים אחרים הם היו יכולים לחסוך הרבה שגיאות מביכות.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296627
שנתפשר על "כנופיית מנדלברוט"?
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296653
חבורת מנדלברוט זה החבר'ה מהפקולטה למתמטיקה בייל ששותים קפה ואוכלים עוגיות שקדים?
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296717
תה, בארבע.
עם חלב, או עם לימון? 296900
עם חלב, או עם לימון? 296919
עם נענע, אלא מה?
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296704
לא הבנתי מה הבעיה עם "חבורת מנדלברוט". הרי יש כזו קבוצה, לא? ויש לה איברים, לא? אז מה הבעיה להגדיר איזה פעולת כפל בין האברים שלה? יש בכלל קבוצה שהיא לא חבורה (עד כדי הגדרת פעולת כפל)?
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296705
חוץ מכפל יש עוד כמה תבלינים שבלעדיהם לא תיתכן חבורה, אבל אשאיר את התיאור לטבח הראשי, אלון.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296707
לא נכון. כל מה שצריך זה פעולת כפל. אמנם פעולת הכפל צריכה לקיים תנאים מסויימים, אבל עבור כל קבוצה שהיא ניתן להגדיר כזו פעולה, בלי להוסיף או לגרוע מהקבוצה.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296733
לא בדיוק, צריך גם 0 ו-‏1 (אני רק לא זוכר כרגע איך הם מוגדרים בהכללה).
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296735
צריך איבר אדיש בודד, והוא מוגדר כחלק מהגדרת הפעולה.
פצע ומכה טריה 296706
תגובה 296327

אולי אין בעיה להגדיר כזאת פעולה וכאלה איברים, אבל כל עוד הם לא הוגדרו אין לך חבורה מוגדרת.
פצע ומכה טריה 296708
האיברים כבר מוגדרים, כל מה שצריך זה להגדיר את הפעולה, ובגלל שהגדרת הפעולה היא פעולה טכנית בלבד, ומשום שאף אחד לא משתמש בפעולה הזאת, אז מה הבעיה להניח שקיימת כזו פעולה, לקרוא לקבוצה חבורה? בשביל זה המוציא לאור צריך לשלם כסף ליועץ טכני?
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296709
אאל"ט, לא תמיד אפשר להגדיר פעולת כפל בין האברים ולשמור על תכונת הסגירות (או תכונות אחרות של חבורה, כגון הפיכות).

למשל: קבוצת המספרים השלמים איננה חבורה. לא לכל a קיים בקבוצה b כך שמתקיים a*b=b*a=e. (אבר היחידה מסומן ב-e). זה מתקיים רק עבור האברים 1,1-.

כנראה שמשהו דומה קורה עם אברי קבוצת מנדלברוט. אבל למי אכפת? הציורים נורא יפים.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296713
כאן אתה טועה. זה רק עניין של הגדרת הפעולה. למשל, עבור קבוצת המספרים השלמים, בו נגדיר את פעולת ה"כפל" כחיבור.
סגירות יש? יש.
איבר אדיש יש? יש (0).
איבר הופכי יש? יש.
חוק בקיבוץ מתקיים? מתקיים.

מש"ל.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296720
האם יהיה נכון לקרוא לכל בית "תחנת רכבת" (ולחסוך כסף על הגהות) רק בגלל שאפשר לבנות מסילת ברזל לידו?
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296724
אתה יכול בלי בעיה להגיד שאין מסילת רכבת, אתה לא יכול להגיד שאין פעולה כזו.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296725
אני מריח ויכוח ארוך עם סמיילי שכל כולו התקטננות על סמנטיקה :)

אז רגע לפני שזה מתחיל - האם לכל קבוצה קיימת פעולה כך ש- (פעולה,קבוצה) היא חבורה? אם כן, האם יש לכך הוכחה? אם לא, האם יש דוגמא נגדית (רצוי פשוטה)?
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296728
כן, כל קבוצה S אפשר להפוך לחבורה על-ידי הגדרת פעולה מתאימה. הוכחה: אם S סופית, יש חבורה ציקלית בגודל הנכון. אחרת, החבורה החופשית הנוצרת על-ידי S היא בעלת אותה עוצמה, ולכן אפשר לתרגם את פעולת החבורה החופשית לפעולה על S.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296732
באמת, כדאי שנסיים עם הבדיחה הזאת מהר.

ולשאלתך, עד כמה שידוע לי, כן, מלבד הקבוצה הריקה (שלא מכילה איבר אדיש לשום פעולה) ואפשר להוכיח את זה על ידי איזומורפיזם למספרים השלמים או הממשיים או על ידי בניית חבורה שכז מקבוצה סופית.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296722
וואלה, אתה צודק. בגלל זה המציאו את הסימון (פעולה,קבוצה) ואי אפשר להגיד כלום על הקבוצה לבדה.

(+,Z) היא חבורה.
(*,Z) היא לא חבורה.
(בהנחה שאנו מסכימים על הגדרת הסימנים +,*)

המתטיקאים מוזמנים להעיר את הערותיהם לגבי האם קיים # כך ש (#,מנדלברוט) היא חבורה.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296726
אשאל שאלה יותר פשוטה:
האם באופן "טיפוסי" כל אוסף של מספרים מרוכבים מהווה חבורה תחת הגדרה מתאימה של הכפל?
אינטואיטיבית אני חושב שתמיד אפשר למפות את האוסף באופן חח"ע למישור המרוכב, ואז להגדיר את הפעולה # כפעולה שמבצעת כפל על המיפוי. מצד שני, הגדרת המיפוי נראית לי כמו סיוט.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296727
אני אולי לא מתמטיקאי, אבל אם קבוצת מנדלברוט היא קבוצה בת-מניה, אפשר פשוט לזהות אותה עם השלמים עם חיבור, ואז היא חבורה. אם היא מעוצמת רצף, ניתן לעשות זאת עם הממשיים עם חיבור.

השאלה היא אם יש פעולה טבעית ומעניינת על קבוצת מנדלברוט שהופכת אותה לחבורה.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296729
''השאלה היא אם יש פעולה טבעית ומעניינת על קבוצת מנדלברוט שהופכת אותה לחבורה'' - זהו, שלא. אפשר לקרוא לה ''קבוצת מנדלברוט שאפשר להפוך לחבורת מנדלברוט אם נגדיר פעולה מתאימה'', אבל באותה מידה אפשר לקרוא לכל קבוצה ''קבוצה שאפשר להפוך לחבורה אם נגדיר פעולה מתאימה'', ובעיני ''קבוצה'' זה שם יותר קצר.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296731
אלכ''נ, אבל תודה.
אז מה אם מייקל ג'ורדון שיחק כדורסל? 296747
מה גורם לך לחשוב ש"קבוצה" זה שם קצר יותר מ"קבוצה שאפשר להפוך לחבורה אם נגדיר פעולה מתאימה"?
באיזו הגדרה של אורך אתה משתמש?
אז מה אם מייקל ג'ורדון שיחק כדורסל? 296763
תתבייש לך על השאלה. האורך לא קובע.
אז מה אם מייקל ג'ורדון שיחק כדורסל? 296767
אז מה לדעתך כן קובע מי יותר קצר? קרבה לחברי מרכז?
אז מה אם מייקל ג'ורדון שיחק כדורסל? 296772
אורך הגלות. פרדוקס המספר הקטן ביותר שאי אפשר להגיד בלי להזכיר את אורכו.
Is there a mathmatician in the audience?! 296765
קבוצת מנדלברוט מוכלת במישור הממשי ומכילה משטחים ממשיים. לפיכך עוצמתה היא בהכרח הרצף.

האם זה אומר שניתן להגדיר התאמה חד-חד-ערכית-ועל בין הקבוצה לבין הממשיים?

אויה, שכחתי את מה שלכאורה ידעתי על תורת הקבוצות. הצילו.
Is there a mathmatician in the audience?! 296770
זו פחות או יותר ההגדרה. שתי קבוצות הן מאותה עוצמה אם קיימת התאמה חח"ע ועל מאחת לשנייה (זה יחס שקילות, למעשה).

כדי להראות שקבוצה אחת היא מעוצמה קטנה יותר מקבוצה אחרת די להראות התאמה חח"ע מה"קטנה" ל"גדולה", וזה מה שעשית כאן: קבוצת מנדלברוט מוכלת במישור הממשי (המרוכב, למעשה), כלומר יש התאמה חח"ע ממנה למישור (שפשוט מעתיקה כל נקודה לעצמה).
Is there a mathmatician in the audience?! 296773
תודה, אך לא נושעתי.

התאמה חחע"ע גוררת שוויון עוצמות. ברור. את זה אפילו אני זוכר.
אבל האם שוויון עוצמות גורר קיום התאמה חחע"ע שניתן *להגדיר*?

ובמילים אחרות - האם ליד כל בית אפשר לבנות מסילת ברזל?
Is there a mathmatician in the audience?! 296778
כאן אני כבר לא בטוח, אבל נראה לי שכן. הרי כדי להראות ששתי קבוצות הן מאותה עוצמה תצטרך להראות התאמה חח"ע ועל ביניהן, אין כאן ממש דרך עוקפת (גם שימוש בקנטור-שרדר-ברנשטיין בונה התאמה חח"ע ועל שכזו, אם כי עד כמה שאני זוכר זה לא אפשרי באופן כללי לתאר אותה). אם למשל הראית ש-A שקולה ל-B ו-B שקולה ל-C אז קל מאוד לבנות התאמה חח"ע ועל מ-A ל-B: מרכיבים את שתי ההתאמות שכבר יש לך.

אם תוכל להביא דוגמא למצב שבו אתה מוכיח ששתי קבוצות הן שקולות עוצמה בלי להראות התאמה חח"ע ועל בינן, זה מאוד יסקרן אותי. לדעתי *אי אפשר* לומר על שתי קבוצות שהן שקולות עוצמה מבלי להראות התאמה חח"ע ועל בינן - זו פשוט ההגדרה. מצד שני, אם ההתאמה שבונים בהוכחה של קנטור שרדר ברנשטיין לא נחשבת בעינייך למסילת ברזל, אז כן, לא ליד כל בית אפשר לבנות מסילת ברזל.
Is there a mathmatician in the audience?! 296785
האומנם אין דרך קיצור?
קל מאוד להראות ש
|C|=|R^2|>=|M|>=|R|
וכיוון שהודות לקנטור ושות'
|R^2|=|R|
ברורה גם עוצמת M.

כאן לא הראיתי שום התאמה אל או מאת M. ולא הצלחתי להשתכנע שחייבת להיות התאמה גדירה שכזו.

הנקודה המעניינת ביותר לענייננו היא סברתך לגבי ההתאמה: "לא אפשרי באופן כללי לתאר אותה". אם במקרה מנדלברוט אי אפשר לתאר אותה, אי אפשר להגדיר חבורה מעל הקבוצה, לפחות לא באופן זה. ואז השאלה נותרת פתוחה!
  Is there a mathmatician in the audience?! • גדי אלכסנדרוביץ' • 2 תגובות בפתיל
  Is there a mathmatician in the audience?! • האייל האלמוני
  Is there a mathmatician in the audience?! • האייל האלמוני • 2 תגובות בפתיל
  Is there a mathmatician in the audience?! • האייל האלמוני
  אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע • גדי אלכסנדרוביץ'
  אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע • הפונז
  אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע • האייל האלמוני • 29 תגובות בפתיל
  אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע • אלון עמית • 9 תגובות בפתיל
  אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע • סמיילי
  אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע • יהונתן • 4 תגובות בפתיל
  שאלה לחלוטין לא קשורה • easy • 2 תגובות בפתיל
  ללא כותרת • אורי פז
  ללא כותרת • שוטה הכפר הגלובלי • 75 תגובות בפתיל
  ללא כותרת • ברקת
  ללא כותרת • שוטה הכפר הגלובלי
  ללא כותרת • יעקב
  ללא כותרת • יובל רבינוביץ • 53 תגובות בפתיל
  ללא כותרת • שוטה הכפר הגלובלי
  תרומת איברים • יעקב • 3 תגובות בפתיל
  ללא כותרת • שוטה הכפר הגלובלי
  ללא כותרת • ירדן ניר-בוכבינדר
  ללא כותרת • הפונז
  ללא כותרת • שוטה הכפר הגלובלי
  ללא כותרת • הפונז
  אומרים לי שאני חצי בן אדם • ידידיה • 2 תגובות בפתיל
  ללא כותרת • ירדן ניר-בוכבינדר
  ללא כותרת • שוטה הכפר הגלובלי
  ללא כותרת • שוטה הכפר הגלובלי
  ללא כותרת • אריק
  ללא כותרת • easy • 2 תגובות בפתיל
  ללא כותרת • שוטה הכפר הגלובלי

חזרה לעמוד הראשי

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים