בתשובה לשוטה הכפר הגלובלי, 04/02/20 11:44
מתנה לשבת 713140
אם תקרא את ההוכחה, תראה שהיא צצה שם כתוצאה של קשר רקורסיבי בין נפח של כדור בממד נתון, לנפח של כדור באותו רדיוס בממד נמוך יותר - שזהה למבנה הרקורסיה באמצעותה פונקציית העצרת מוגדרת. זה מה ש-''טבעי'' בהופעה של פונקציית גאמה בהקשר הזה.
מתנה לשבת 713145
אני מאמין לך בלי לקרוא את ההוכחה (הצרפתית שלי לא מה שהיתה פעם). רק לשם תזכורת, זאת תשובה לשאלה של שוקי "אתה יכול לתת דוגמה בה פיי לכאורה אינו קשור למעגל?" אחרי שכתבתי "אני מתחיל לחשוב שבסופו של דבר מאחרי כל פיי כן מסתתר מעגל". ההדגשה שלי.
מתנה לשבת 713157
דעתי כדעתך, אבל בוא נראה מה יש לאלון להגיד.
מתנה לשבת 713160
שמישהו יקרא לו הנה.
מתנה לשבת 713164
את רוב מה שיש לי לומר כתבתי כאן.

אני לא מבין את הטענה שמאחורי כל מופע של פאי ״מסתתר״ מעגל: אפשר למתוח את ההסתתרות כמה שרוצים ואז להכריז נצחון. סנדרסון מציג פתרון גיאומטרי נאה לבעיית בזל בעזרת מעגל, אבל אני לא רואה איך לעשות את אותו הדבר במצבים אחרים, כמו חישוב פונקציית זיטא ב-‏14 או כשמוכיחים שפאי אי-רציונלי.

הכל קשור להכל, בסדר; הטענה שלי היא שההגדרה הטבעית והיסודית ביותר של המספר הזה לא מתחילה ממעגל, ולמעשה ההגדרה עם המעגל היא לא פשוטה כלל וכלל. כנ״ל לגבי הפונקציות הטריגונומטריות. אם יש הוכחה של משהו עם פאי שמופיע בה קוסינוס זו לא סיבה להתפעל ממעגל כלשהו; כמעט תמיד המהות של הקוסינוס הזה היא היותו פונקציה המקיימת משוואה דיפרנציאלית מסויימת. מאחורי הקוסינוס ״מסתתר״ מעגל? נו טוף. לא מבין איזה אור זה שופך על המצב.
מתנה לשבת 713168
היי אלון, טוב לפגוש אותך שוב. אני מסכים שלא מדובר על משהו חשוב או עמוק במיוחד, אבל למה אתה זועף? לא התאוששת מההפסד של פריסקו?

(אגב, אאל"ט לפחות הוכחה אחת לאירציונליות של π מתחילה מפיתוח של TAN).
מתנה לשבת 713174
סליחה, בכלל לא התכוונתי לזעוף. פריסקו הפסידה?

(לא כל כך הבנתי את ההערה בסוגריים. כל ההוכחות לאי-רציונליות של פאי מתחילות מ-exp או מפונקציות טריגונומטריות, וכפי שניסיתי להסביר, אין טעם בלקרוא לזה ״מעגל מסתתר״).
מתנה לשבת 713178
אוקיי, אוקיי. חשבתי שאתה מתכוון שההוכחות לא מתבססות על פונקציות טריגונומטריות (מה אני יודע? אני מכיר בקושי אחת).
מתנה לשבת 713225
את הטענה ש-"מאחורי כל פאי מסתתר מעגל"‏1 אני מצדיק כך: במטריקת l1 היחס בין היקף של מעגל לקוטרו הוא גודל קבוע, ושווה תמיד ל-‏4, ואני רוצה להגיד שבמרחב הזה pi=4.

אני לגמרי מסכים עם שכ"ג שלא מדובר במשהו חשוב, אבל דווקא כן חושב שיש בו עומק. המודל המנטלי שלי הוא כזה: המספרים הממשיים והמרוכבים קשורים אינטימית לגיאומטריה האוקלידית (נגיד, בגלל הקשר בין הנורמה האלגברית שלהם לנורמה האוקלידית), ולכן באנליזה ממשית ומרוכבת הערך 3.14159... צץ בכל מקום. אבל זו תופעה גיאומטרית ביסודו של דבר, ובהקשרים שמערבים גיאומטריה שונה למספר הזה אין שום תפקיד, בעוד שלרעיון הגיאומטרי (האופן בו הנפח גדל עם הרדיוס - אם בכלל - וכדומה) נשאר תפקיד מרכזי.

למשל, באנליזה פי-אדית למספר 3.141592... יש איזשהו תפקיד? (רחוק מהתחום שלי - אבל אני חושב שלא).

1 אני לא עומד מאחורי הניסוח הזה בדיוק.
פלאטלנד כדורי 713230
נראה לי שגם אם היינו חיים בעולם דו-ממדי, אבל על כדור, כשיחס המעגל לרדיוס אינו פאי וכן הלאה, עדיין הפונקציה האקספוננציאלית היתה נשארת כמו היום, והמחזור שלה היה נשאר 2*פאי*i. הפאי האמיתי, לא זה של העולם הכדורי.
כנל גם ההתפלגות הגאוסית הנורמלית.
פלאטלנד כדורי 713232
יש התפלגות גאוסית לא נורמלית?
פלאטלנד כדורי 713236
אתה רשאי למחוק אחת מהן כרצונך.
או כמו שאני מנסה לחנך את הבת הגדולה שלי - זה שאמרתי לך משהו כבר פעם אחת לא אומר שאסור לי לומר אותו שוב.
פלאטלנד כדורי 713237
אני חושב שלפסיכיאטר מחוזי יש סמכות לקבוע את זה.

______________
אריק מתעל את התסכול שלו מכך שלא רק את הרעיונות בשרשור הזה הוא מתקשה להבין, אלא אפילו חלק מהמלים זרות לו לחלוטין.
פלאטלנד כדורי 713260
לאיזו פונקציה אקספוננציאלית אתה מתייחס? (זה מבלבל במיוחד, כי בחרת את הממד הנמוך היחיד בו הספרה אינה חבורת-לי...)

אני גם לא עוקב אחרי הטענה אודות ההתפלגות הנורמלית. אבל יש קשר הדוק בין התפלגות נורמלית לכדורים אוקלידיים, אז גם בלי להבין, אני מהמהר שאתה צודק.
פלאטלנד כדורי 713261
זו שפותרת את המשוואה f' = f.
פלאטלנד כדורי 717114
אגב, גם בהתפלגות גאוסית יש (שורש) פאי, שיש שיטענו שהוא נובע מאינטגרל וכולי, אבל אני רואה בזה פלא קטן.
פלאטלנד כדורי 717143
אכן, ההוכחה הרגילה לכך משתמשת בעובדה שלהתפלגות הגאוסית יש סימטריה סיבובית בשני מימדים, זאת הסיבה לכך שמופיע שורש פאי ולא פאי עצמו (וראה גם תגובה 713169).
פלאטלנד כדורי 717151
התגובה שלך יותר מדוייקת ועמוקה מתמטית (סימטריה רדיאלית של האינטגרל) אבל הסרטון הבא מדגים יפה ופשוט עד כמה מדובר בחישוב פני השטח של חצי כדור.
חישוב אינטגרל סופי של פילוג נורמלי
פלאטלנד כדורי 717169
לא הבנתי מה ההבדל בין התגובה שלי למה שמופיע בסרטון.
פלאטלנד כדורי 717170
לא התכוונתי שמדובר בהסברים שונים.
הסרטון מראה באופן טכני איך ה-pi מופיע כתוצאה של חישוב פני השטח של חצי כדור. ההסבר שלך מסביר את הסיבה מנין הופיע הכדור (הסימטריה הרדיאלית של הפונקציה וגו').
פלאטלנד כדורי 717178
איפה אתה רואה שם כדור, ואיפה אתה רואה שם חישוב של פני שטח?
פלאטלנד כדורי 717193
צודק. זה נפח של גוף סיבובי. וכדי להציל את כבודי, אומר, שזה סכום הנפחים של סדרה של גלילים אינפיניטיסימלים.
פלאטלנד כדורי 717217
הכל בסדר ;-)

בגלל הקורונה, יימח שמה, אני משקיע הסמסטר הרבה שעות בלהמיר את חומר ההרצאות שלי ב"מבוא להסתברות" לשקפים (עד היום לימדתי את הקורס בגישת אולד סקול, עם טוש על לוח). בצירוף מקרים מוחלט, הדיון הקטן הזה שלנו בדיוק נפל על הכנת השקפים בנושא ההתפלגות הנורמלית, ועל איך מוכיחים שהאינטגרל של הצפיפות שלה מסתכם ב-‏1 למרות שלצפיפות הנ"ל אין פונקציה קדומה אלמנטרית.

וחוץ מזה, הסרטון שקישרת אליו משתמש בבירור בחבילת האנימציה שהכין גרנט סנדרסון הגאון, לטובת ערוץ היוטיוב המהמם שלו, 3blue1brown.
פלאטלנד כדורי 717224
גרנט עומד להתחיל בערוץ שידורים ישירים של מה שלפי הבטחתו יהיה מתמטיקה תיכונית בצורה קצת אחרת מהמקובל. היום ב 22:00 הרצאה על משוואות מהמעלה השניה (כן, אני יודע). לא ברור לי מה היתרון בשידור ישיר וממילא בשעה היעודה אהיה עסוק בעניינים אחרים, אבל אולי מישהו ירצה לראות (או להפנות נערים ונערות בגיל המתאים). הנה: https://www.youtube.com/watch?v=MHXO86wKeDY
פלאטלנד כדורי 717225
כן, גם אני קיבלתי את ההודעה הזאת (האם גם אתה תומך בו בפטראון?).

ונאמן למשפט המפורסם של בגין, "לא שואלים ג'נטלמן איפה הוא בילה את הלילה", לא אחקור מהם העניינים האחרים שיעסיקו אותך ב-‏22:00.
פלאטלנד כדורי 717234
אני לא תומך אפילו בעצמי, אבל אני מנוי על הערוץ שלו.

לא שאלת אבל אענה: הערב אני עומד להפעיל את הסעיף "סיוע לאדם עם קושי או מצוקה הדורשים סיוע".
פלאטלנד כדורי 717244
ניטפיקינג לוגי פילוסופי - צורת החישוב של משהו היא טכניקה ספציפית, וייתכן שיש אחרות. האם טכניקה ספציפית מצדיקה את האמירה העקרונית "ההתפלגות הנורמלית קשורה לפאי כי... השתמשתי בעיגול כדי לחשב את האינטגרל"?

דוגמה ממקום אחר - מן הידועות שחלק מבעיות הבסיסיות שפותרת מכניקת הקוונטים ניתנות לפתרון בכמה שיטות. למשל, פתרון המשוואה הדיפרנציאלית של שרדינגר, או ע"י חשבון המטריצות של הייזנברג.
האם היינו אומרים ש"רמות האנרגיה של אטום המימן הן כאלה כי הפתרון משתמש במטריצות"?
האם שיטת פתרון ספציפית מצדיקה אמירה על התכונה הבסיסית של הבעייה המתימטית שפתרנו?
אני בכלל לא בטוח.
פלאטלנד כדורי 717253
יש למילה "סיבה" שני פירושים:

1. גורם של אירוע. "הסיבה לכך שנדבקת בקורונה היא שהיית במגע עם חולה מספר 241"
2. הסבר, תירוץ. "אתה לא יכול לתת לי דוח בלי סיבהײ. "הסיבה שאתם לא יכולים לראות טלוויזיה היא שכבר הייתם היום 27 שעות מול מסך"
פלאטלנד כדורי 717266
מסכים. וחלק מהדיון הוא האם מדובר כאן בדבר אחד או בדבר שניים.
האם הגורם להופעת פאי היכנשהוא הוא מעגל חבוי, או שכשהוא מופיע יש צורת הצגה כלשהיא - אבל לא הכרחית או יחידה - שניתן דרכה לתרץ את הופעתו.
פלאטלנד כדורי 717272
זה מעניין - אני לא בטוח אם פירוש מספר 1 בכלל קיים במתמטיקה.
פלאטלנד כדורי 717273
במקרה הספציפי, להרחבת הפונקציה בשני מימדים יש סימטריה מעגלית. כמו שאתה יודע היטב, זה כבר יותר מסתם עניין של בחירת צורת חישוב. גם אם הפיי היה נעלם מהתוצאה הסופית, הוא כנראה היה צץ איפשהו בדרך לשם.
פלאטלנד כדורי 717278
כמו שהקשה המקשה כבר אמר: במקרה זה המעגל קשור קשר הדוק, שכן הפונקציות מהצורה משהו בחזקת x בריבוע הן היחידות שיש להן את התכונה שכשאר מכפילים שתיים מהן מקבלים משהו שתלוי רק במרחק מהראשית (זה נכון גם במימדים גבוהים יותר).
פלאטלנד כדורי 717242
זו בדיוק היתה הטענה שלי, אחרת לא הייתי מזכיר אותה.
מתנה לשבת 713303
אולי חוסר ההסכמה בינינו הוא רק ענין של סמנטיקה. בעיני הקשר של הפונקציה האקספוננציאלית למעגל הוא ענין בסיסי ואי אפשר להגיד שפאי הוא חצי המחזור שלה בכיון המדומה אבל שמעגלים זה תופעת לוואי לא מהותית. לא, המשוואה הדיפרנציאלית שמגדירה את הפונקציה האקספוננציאלית מתארת תנועה מעגלית (בקצב של 1) כשמתקדמים בכיון המדומה וזהו לב הענין.
העובדה שזו פונקציה מרוכבת אולי מטשטשת קצת את זה אבל הענין הוא שאם
f'(z)=f(z)
ונגדיר
g(t)=f(it)
כאשר חושבים על t כעל משתנה ממשי, נקבל שמתקיימת המשוואה
g'(t)=ig(t).
מכיוון שהכפלה ב-i היא סיבוב ב-‏90 מעלות נקבל ש-g מתארת תנועה של גוף שהמהירות שלו תמיד מאונכת למיקום שלו, כלומר תנועה מעגלית סביב ראשית הצירים במהירות ששווה לרדיוס.
בקיצור, זה לא ש-
exponential function harbors the trigonometric functions and the trigonometric functions connect back to circles
אלא שלהתנהגות של הפונקציה האקספוננציאלית יש שני מרכיבים: 1) גידול מעריכי (במובל הרגיל) בציר הממשי 2) תנועה סיבובית בציר המדומה. איך אפשר לראות אותה ולא לראות מעגלים?

חזרה לעמוד הראשי המאמר המלא

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים