בתשובה לגדי אלכסנדרוביץ', 20/08/06 21:48
אחת שתיים 403812
נכון, לעולם לא תראה (אלא אם כן אתה בטריפ רציני) שתיים הולך מחובק עם מינוס אחת. אבל כולנו יודעים מה זה מינוס אחת ומה זה שתיים, אנחנו המצאנו אותם והם הפכו להיות הבסיס למתמטיקה. כלומר חשבון פשוט הוא והחוקיות שלו, הבסיס שכולנו מבינים בכל רחבי עולם, וגם ילד קטן יבין אותו. מספר מדומה/מורכב, לעומת זאת, סותר לנו את כל החוקיות של החשבון (של מספרים מינוס אחת ושתיים) "שהמצאנו", הוא כופה עצמו בכוח ובכך סותר את מה שקבענו מלכתחילה שהוא טבעי ונכון. זה מה שאני לא מבינה במספרים מרוכבים, נדמה כאילו הם מביאים איתם חוקיות אחרת, שונה מזו שאנחנו מכירים.
אחת שתיים 403814
איזה חוקיות של החשבון סותר מספר מרוכב?

מה זאת אומרת "כופה עצמו בכוח"?

איך הוא "סותר את מה שקבענו מלכתחילה"?

מה זה "טבעי ונכון"?
אחת שתיים 403819
החוקיות שאם נעלה מספר שלילי בחזקת שתיים תמיד התוצאה תהיה מספר חיובי, כלומר שורש ריבועי של מספר לעולם לא יתן מינוס...
טבעי ונכון זה מה שקבענו שהוא -אחת, שתיים, אחת כפול מינוס אחת שווה מינוס אחת, מינוס חצי כפול מינוס חצי שווה רבע.
אחת שתיים 403827
החוקיות "שאם נעלה מספר שלילי בחזקת שתיים תמיד התוצאה תהיה מספר חיובי" נשמרת גם עם המספרים המרוכבים. במילים אחרות, ה"כלומר" שלך פשוט לא נכון, יש לך פשוט טעות לוגית. (האם, למשל, זה שמספר חיובי ועוד מספר חיובי תמיד יהיה גדול מאפס גורר שסכום של שני מספרים לעולם לא יהיה אפס?)

לא יודע למה זה "טבעי ונכון", אבל, איפה במספרים המרוכבים יש משהו שלא עומד בתנאים האלה?
אחת שתיים 403828
אוקיי, אם מעלים מספר שלילי בחזקת שתיים מקבלים מספר חיובי. אבל מספר מרוכב אינו מספר שלילי, אז החוקיות לא נשברת...

דוגמה נוספת לשבירת חוקיות: אני יודע שמספר a ועוד מספר b זה תמיד מספר חיובי שגדול מ-a. פתאום מוסיפים לי "מספרים איכסיים" שאם מחברים אותם למספר חיובי a, מקבלים מספר ש*קטן* מ-a. איכס!

כלומר, "שבירת אינטואיציה" יש בכל הרחבה של מערכת המספרים שלנו. למעשה, זוהי ה*מוטיבציה* להרחבת מערכת המספרים.

אגב, לא ברור לי למה לא קישרתי לכאן קודם, אם כי זה אולי טכני מדי:

(ותודה לעוזי).
אחת שתיים 403831
מספר *חיובי* a ועוד מספר *חיובי* b, כמובן.
אחת שתיים 403823
כפי שסמיילי שאל, מה לא חוקי במספרים מרוכבים? פעולות החיבור והכפל איתם הן קוהרנטיות עם שאר המתמטיקה. בפרט, אפשר לחשוב על כל מספר ממשי בתור מספר מרוכב (אם מספר מרוכב "כללי" הוא a+bi, אז מספר ממשי הוא מספר מרוכב עם b=0) ובמקרה הזה כללי החשבון של מספרים מרוכבים *מכלילים* את כללי החשבון של המספרים הממשיים.

הטענה "כולנו יודעים מה זה מינוס אחת ומה זה שתיים, אנחנו המצאנו אותם..." היא הסיבה שבגללה הבאתי את הציטוט של קרונקר למעלה. לנו, אנשים שגדלו בסוף המאה ה-‏20 ונחשפו למתמטיקה מסויימת, המושג של "מספר שלילי" נראה טבעי וברור. עד לפני מאה, מאתיים שנים זה כלל לא היה כך, והיו אנשים שדחו את המספרים השליליים בשאט נפש (גם מתמטיקאים פוריים ונבונים). שלא לדבר על הכבשה השחורה שטרם דיברתי עליה - האפס, שעכשיו נראה לנו ברור וטבעי, אבל לאנשים רבים כלל לא היה כזה. דוגמה לכך אפשר לראות בזה שאין "שנת אפס" (בין 1 לספירה ו-‏1 לפני הספירה), למרות שאני מניח שהאינטואיציה של כולנו אומרת לנו שצריכה להיות.
אחת שתיים 403963
''שנת אפס'' יש ויש. אולי בגילך אינך מכיר כאלה עדיין, אבל אנשים יותר מבוגרים נאלצים להתמודד עם הדבר הזה בלא מעט לילות.
תיקון קטן 404522
אין שום סיבה שתהיה ''שנת אפס'' לספירה כי שנה היא קטע בזמן ולא נקודה. נקודת אפס לספירה קיימת - הרגע שבו מסתיימת השנה המינוס אחת ומתחילה השנה הראשונה.

ואם האינטואיציה של כולנו אומרת לנו שצריכה להיות שנת אפס, אז - כפי שאמר פעם אחד המרצים שלי באוניברסיטה (ליתר דיוק, הוא סיפר לי שאחד המרצים שלו אמר את זה פעם) - לפעמים צריך לתקן את האינטואיציה.
תיקון קטן 404540
לא שוכנעתי. בשבילי "שנה" על ציר המספרים היא הקטע שמתחיל ב-n ונגמר ב-n+1. אני מקבל את הרושם שאצלך זה מתהפך במעבר אל "לפני הספירה", כלומר שאם n שלילי, אז שנה היא הקטע שמתחיל ב-n ומסתיים ב-n-1, ואז 0 הוא באמת נקודה בלבד. הבעיה היא שגם סדר החודשים והימים צריך להתהפך (כלומר, לפני ה-‏1 בינואר 1 בא ה-‏1 בינואר מינוס 1).

דרך אחרת לחשוב על זה: נניח שמגלים שישו נולד שנה אחת מוקדם יותר (אם איני טועה הוא נולד 4 שנים מוקדם יותר) ו"מזיזים" את כל השנים צעד אחד קדימה בגלל זה - השנה 1 הופכת לשנה 2, השנה 2 הופכת לשנה 3 וכדומה. במקרה הזה השנה מינוס 1 צריכה להפוך לשנה 0 (ואז לא תהיה לנו את השנה 1) אלא אם נחליט שאותה נקדם דווקא פעמיים.
תיקון קטן 404571
הבעיה היא כנראה בטרמינולוגיה. אם אתה מתיחס ל1 בינואר שאחרי הולדתו (לכאורה) של ישו בתור "תחילת הספירה" אז השנה שהחלה באותו 1 בינואר היא בהחלט השנה הראשונה לספירה. ה1 בינואר שקדם לו היה שנה לפני הספירה. איך אתה מחליט למספר אותן, זו כבר שאלה אחרת. בכל מקרה, ה1 בינואר הבא הוא תחילתה של השנה ה2007 לתחילת הספירה וזה נכון. באותו אופן, חורבן בית ראשון קרה 586 שנה לפני הספירה, כך שצורת הספירה הזאת (ללא שנת 0) היא אולי לא אינטואיטיבית, אבל כשרוצים לדבר על תזמון של ארועים בצורה טבעית, היא הכי נוחה.
תיקון קטן 404727
לדעתי זה ככה: כשחושבים על השנים כבאות "לפני תחילת הספירה" ו"אחרי תחילת הספירה" אז אי השימוש באפס הוא מתבקש. לעומת זאת, כשחושבים על השנים פשוט בתור מספרים שהולכים בצורה סדרתית, נדמה לי שיותר טבעי להכניס גם את האפס לעניין, כי בימינו כולם יודעים שבין אחד ומינוס אחד בא אפס.
תיקון קטן 404743
עוד לא הביאו קישור לויקיפדיה?

http://en.wikipedia.org/wiki/Year_zero

A year zero does not exist in the Christian Era and its Gregorian calendar or its anterior Julian calendar.

A year zero does exist in ISO 8601:2004 and in the astronomical year numbering with a defined year zero equal to 1 BC, as well as in some Buddhist and Hindu lunar calendars.

Astronomers include a year 0 immediately before year 1.

חזרה לעמוד הראשי המאמר המלא

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים