|
||||
|
||||
גם לפני שמכריזים על משהו בתור "מושג יסוד" צריך להגדיר מה זה "מושג יסודו". עיקרו של דבר: תמיד צריך להתחיל ממשהו, ואותו משהו *אסור* שיהיה בלתי מובן, אלא *צריך* שתהיה לו איזו משמעות אינטואטיבית, אחרת אף אחד לא יבין אותך. אני מסכים מאוד עם דורון שיש מושגים שאנחנו מכירים בלי להגדיר, ושהמושגים הללו צריכים להיות בבסיס המתמטיקה (עד כמה שהבסיס שלה מעניין אותנו, ולרוב הוא לא ממש אלא אם הוא תחום העיסוק שלנו), אבל ככל הנראה אני לא מסכים איתו לגבי מהם אותם מושגים ומה משמעותם - מה שמאוד מחליש את הסברה שלי שאותם המושגים הם בעלי אותה משמעות אינטואטיבית עבור כולם. |
|
||||
|
||||
אני מסכים ולא מסכים. אין טעם בפיתוח תורה שלא עוסקת במושגים אינטואיטיביים, כשם שזה לא מעניין (ואף קשה) לשחק ב"שחרמט" (תגובה 347784). ובכל זאת, כאשר משחקים שחמט, אי אפשר להכריז על התובנה ש"צריח לא יכול לזוז" 1 כנכונה, רק כי זו האינטואיציה שלנו. זה בדיוק המצב במתמטיקה: אנחנו צריכים להגדיר את הנחות היסוד שבהן נשתמש, ורק בהן. נכון, השאיפה היא שהאקסיומות יתארו את המושג האינטואיטיבי. ובכל זאת, אם אתה רוצה לשכנע אותי שטענה כלשהי על אובייקטים כלשהם היא אמת, אנחנו צריכים להסכים על כל התכונות הרלוונטיות של האובייקטים. בקיצור, יש להפריד בין מטרת המתמטיקה, לדרך הפעולה המתמטית: המטרה צריכה להיות חקירת מושגים אינטואיטיביים, דרך הפעולה צריכה להתבסס על מושגי יסוד ועל אקסיומות. 1 ע"פ התפתחות עלילת השחמט, הצריח נמצא על גבו של פיל, כמדומני. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |