|
||||
|
||||
אני לא יודע מה "ניתן היה להבין" ומי הבין את זה ככה, אבל באקסיומות של הגיאומטריה האוקלידית (לפחות בגרסה של הילברט) ישר הוא לא קבוצה של נקודות. ישר ונקודה הם מושגי יסוד, שמקיימים ביניהם יחסים מסוימים (אלמלא היחסים האלה - מה היה לנו לחקור?). היחס המרכזי שהם מקיימים הוא החלות. לפעמים נקודה חלה בישר (כלומר, נמצאת עליו). לפעמים ישר חל בנקודה (כלומר, עובר דרכה). היחס הזה הוא דואלי. לאינטואיציה נוח לקבל את הרעיון שנקודה היא אובייקט וישר הוא קבוצה של נקודות. דווקא הגישה המתמטית האקסיומטית של הילברט טוענת אחרת. |
|
||||
|
||||
על פי העמוד הראשון בספר היסודות של אוקלידס אין אמירה ברורה שהקו מורכב מנקודות : אבל לעומת זאת הפתיחה של ספר היסודות של הגאומטריה של הילברט אומרת במפורש שהקו מכיל נקודות. ( תקן אותי אם אתה חושב אחרת ) שים לב כי אוסף נקודות צפופות יוצר רק אשליה אופטית של קו רצוף. על פי המתמטיקה העמומה בזיקה שבין נקודה וקו לא ניתן למצוא הסבר לתופעת הצבעים. רק הפרדה קטגורית נקודה וקו כאטומים מאפשר ליצור שפה שיש בה הסבר לאפקט הצבעים הדמיוניים. זה מאד פשוט ! זוהי המשמעות האמיתית של תוצאת שיטת האלכסון של קנטור. ולא שהרצף לא ניתן להימנות. משמע - השערת הרצף אינה רלוונטית כלל, למרות שהוצגה על ידי הילברט כבעיה הראשונה בכינוס בפריס ב 1900. משה |
|
||||
|
||||
אני חושב אחרת. ניתן להגדיר ישר כקבוצה של נקודות ונקודה כקבוצה של ישרים, כך שאם ורק אם ישר שייך לנקודה גם הנקודה שייכת לישר. זה מה שעושים ב"גיאומטריות פרויקטיביות סופיות", למשל, שזה תחום במתמטיקה דיסקרטית. אולי גם הילברט נוקט בגישה הזאת במקרים מסוימים. בכל אופן, ניתן לדבר על כל נושא במתמטיקה הקיימת בלי להגדיר ישרים ונקודות כקבוצות. לכן כדאי שנדלג מעל הבור הזה, ונמשיך הלאה. המתמטיקה עוד לא נפלה. אגב, שמתי לב שאנחנו תמיד עוסקים בשאלה "האם ישר הוא קבוצת נקודות?" ולא בשאלה ההפוכה. לכאורה, זה הרבה יותר אינטואיטיבי. הישר *נראה* כמו קבוצת נקודות. אבל לא פחות נכון לשאול "האם נקודה היא קבוצת ישרים?". |
|
||||
|
||||
אייל צעיר, נקודת השקפתך מוגבלת לגיאומטריה או לטופולוגיה. אנא ראה דוגמא להגדרה ריגורוזית של המושגים קו ונקודה ברמה הלוגית: תגובה 327329 |
|
||||
|
||||
"אייל צעיר, נקודת השקפתך מוגבלת לגיאומטריה או לטופולוגיה" לא, היא לא. לא טענתי אף טענה על היחס בין ישרים ונקודות. אני כל הזמן טוען שניתן לראות ישרים *לא כקבוצות של נקודות*. בדיוק כמו שאתה אוהב. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |