בתשובה לגדי ו., 06/06/04 13:58
משהו פה לא יכול להיות 223920
חוקי ניוטון, כפי שהם נלמדים בביה"ס וגם בתואר ראשון מתיחסים לגופים קשיחים. הירח הוא גוף קשיח, אבל כדה"א לא ובאופן מעשי, לו כדה"א היה עשוי מנוזל בלבד (או היה מכוסה כולו בנוזל בגובה מספיק) הוא היה נעשה אליפסואיד שהציר הארוך שלו בכיוון הירח ומסתובב יחד איתו. הגאות והשפל זה קרוב של המצב הזה.
באופן מעשי, גאות ושפל כרוכים בהפיכת אנרגיה לחום (ע"י שינויים אלסטים בכדה"א או ע"י חיכוך) ולכן השאלה הנכונה, היא מה מקור האנרגיה הזאת. התשובה היא שהירח וכדה"א, כתוצאה מאיבוד האנרגיה הזה מאבדים ממהירות הסיבוב העצמי שלהם. על כדה"א השינוי הוא זניח ביותר, אבל על הירח זה שינוי ניכר יותר, שגם גורם לירח להתרחק מאיתנו כ3 ס"מ בשנה.
משהו פה לא יכול להיות 224077
אז גאות היא מקור אנרגיה שכן מתכלה? באסה.

(בעצם, בטח כל מקורות האנרגיה מתכלים בטווח הרחוק. המונח "מקור בלתי-מתכלה" מתייחס אולי לכאלה שההתכלות שלהם לא תלויה באופן חזק בצריכה.)
משהו פה לא יכול להיות 224084
(או לכאלה שיתכלו עוד כל כך הרבה זמן שזה כמעט לא רלוונטי).
משהו פה לא יכול להיות 224140
בגלל התרחקות הירח, הגאות הולכת ונחלשת עם הזמן.
יש לציין שהגאות לא נגרמת ישירות מכח המשיכה של הירח (ולראיה, כח המשיכה של השמש על כדה''א חזק בהרבה מזה של הירח ועדיין הגאות מושפעת בעיקר מהירח) אלא מההבדלים בכח המשיכה של הירח על פני המקומות השונים בכדה''א, וההבדלים האלו קטנים עם המרחק.
משהו פה לא יכול להיות 224231
ניצול הגאות לצורכי אנרגיה, מקטין את אנרגית הגאות. יש לעצור את תחנת הכוח הנ''ל לפני שנאבד את הירח.

(נדל''ן..)
משהו פה לא יכול להיות 224234
להיפך. יש להקים התיישבות על הירח, ובעזרת ניצול מוגבר של אנרגיית הגאות לשגר אותם למסע בין כוכבי.
משהו פה לא יכול להיות 224243
מסע בין כוכבי? נסה שוב. הירח לא יברח- הוא פשוט ינעל במסלול מקביל לנו.
משהו פה לא יכול להיות 224255
שיט. אז כדאי לנצל גם את הגאות על השמש.
משהו פה לא יכול להיות 224466
גאות על השמש? אתה משתטה!
אבל אפשר להשקיע אנרגית שמש ביצירת גאות ושפל על כדוה"א ולדחוף את הירח באמצעות לחצי כבידה למסע בין כוכבי.
משהו פה לא יכול להיות 224347
למיטב זכרוני‏1 המערכת מתכנסת למצב שבו הירח סובב את כדור הארץ במרחק של 478,000 ק"מ (בניגוד ל- 383,000 הנוכחיים), כאשר הוא מרחף באופן קבוע מעל אותה נקודה. עדיין לא ידוע מי יזכה לראות את הירח תלוי מעל הראש באופן קבוע, ומי יצטרך לצפות בו בתלת-וויזיה. במקביל, היממה תתארך, עד שתגיע לאורך של ... (התשובה במהופך. מה נראה לכם סביר?)

1 אני זוכר גם דברים שעוד לא קרו

(התשובה לשאלה בגוף הסרט: בערך ארבעים ושניים יום).
משהו פה לא יכול להיות 224348
אתה בטוח? כדי שהירח יהיה כל הזמן מעל אותה נקודה, הוא צריך זמן מחזור של 24 שעות ולא של 42 יום.
משהו פה לא יכול להיות 224410
הירח מתרחק, ולכן (אם חוקי קפלר עדיין בתוקף) זמן הסיבוב שלו סביב כדור הארץ ("חודש") הולך ומתארך. בסופו של דבר הירח עומד מעל אותה נקודה, ואז זמן הסיבוב של כדור הארץ סביב צירו (הידוע בכינויו "יממה") צריך להיות שווה לאורך החודש (ושניהם שווים ל-‏42 ימים מהזן הנוכחי).
משהו פה לא יכול להיות 224421
"הירח מתרחק, ולכן (אם חוקי קפלר עדיין בתוקף) זמן הסיבוב שלו סביב כדור הארץ ("חודש") הולך ומתארך."
נכון.

"זמן הסיבוב של כדור הארץ סביב צירו (הידוע בכינויו "יממה") צריך להיות שווה לאורך החודש"
למה? למה זמן הסיבוב של כדה"א סביב עצמו צריך להשתנות? בפרט, זה יפר את שימור התנע הזוויתי של המערכת.
משהו פה לא יכול להיות 224435
1. אם הירח נמצא כל הזמן מעל לאותם ראשים, אז לפי ההגדרה זמן הסיבוב של כדור הארץ שווה לאורך החודש.
2. החיכוך (בגלי הגאות והשפל) מאט את מהלך כדור הארץ, ומאריך את היממה. זו השפעה שקל יותר להבין מאשר ההתרחקות ההדרגתית של הירח.
3. כל עוד המערכת ארץ-ירח מסתובבת סביב מרכז הכובד שלה, יש לאן לנקז את כל התנע הזוויתי בלי ששום טיפת תנע תלך לאיבוד.
משהו פה לא יכול להיות 224685
יש בזה הגיון:
התנע הזוויתי של כדה"א הוא Iw כאשר I זה מומנט האינרציה של כדה"א ו-w זה תדירות הסיבוב של כדה"א.
התנע הזוויתי של הירח הוא בקרוב טוב
mRV=mR*SQRT(GM/R)=m*SQRT(GMR)
כאשר M מאסת כדה"א, m מאסת הירח ו-R זה המרחק ביניהם וכן מניחים מסלול מעגלי.
מסקנה, אם הירח מתרחק והתנע הזוויתי נשמר, תדירות הסיבוב צריכה לרדת פרופורציונית לשורש השינוי ברדיוס.
מסתבר שאתה צודק.

חזרה לעמוד הראשי המאמר המלא

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים