בתשובה לילדה, 23/01/04 2:13
ננסה את הצפרדעים. 192340
הפתרון הכללי שלך כללי מדי, ואינו נכון. קחי שלוש צפרדעים על קו ישר, המרחק בין א' ל-ב' מטר, ובין ב' ל-ג' מאה ואחד סנטימטר, כש-ב' יושבת כמובן בין א' ל-ג'. ג' קופצת ונוחתת ממש מול אפה של א', במרחק קצר יותר מהמרחק המינימלי ממנו התחלנו. התכוונת לומר שלא ניתן להגיע סמוך יותר מאורך הצלע של הסריג הגס ביותר המתאים למצב ההתחלתי.

את 2x2 אפשר לפתור משיקולי זוגיות: שימי אותן על הסריג הרגיל, ושימי לב שהזוגיות של הקואורדינטות נשמרת בכל קפיצה.
ננסה את הצפרדעים. 192651
אתה כמובן הרבה יותר צודק משאני אי פעם אהיה. תודה!
ננסה את הצפרדעים. 192678
את טועה. להיות צודק אפשר להיות רק לגמרי, ורק באופן משעמם אחד. לטעות, לעומת זאת, אפשר ללא גבול, ובמגוון אינסופי של דרכים.
מכת צפרדעים 192755
האם אתה יכול להוכיח כי בחידה המקורית (הצפרדעים בקודקדי ריבוע) אין אפשרות שצפרדע אחת תנחת על אחרת לאחר אחת מהקפיצות?
________________
שכ"ג מנסח את השאלה כאילו *הוא* יודע להוכיח את זה, ומקוה שעד שמישהו ירגיש, אלון או איזה וישנאי יספקו את ההוכחה והוא יחייך כאילו ידע אותה בעצמו. נאיבי.
מכת צפרדעים 192762
כן. ההוכחה כבר כתובה בפתיל...
מכת צפרדעים 192765
כמובן.
_____________
שכ"ג ממשיך את הבלוף. מישהו אחר כבר ישאל על מה, לכל הרוחות, אלון מדבר.
מכת צפרדעים 192860
זוגיות, שטיא, זוגיות. במקום על סריג, הנח לצפרדעים לשחק על לוח-שח גדול (ניחא, אינסופי), ששורותיו צבועות שחור-לבן ואדום-ירוק לסירוגין, וראה זה פלא, כל צפרדע בכל קפיצה שומרת על צבעה משל היא רץ בשחמט (סגולה גדולה להוכיח זאת). והנה, בראשית ניצבת כל אחת על צבע אחר, אז היאך תגיע זו שעל הירוקים לבקר את חברתה שעל הלבנים? אללי, באים חוקי המתמטיקא הרעים והקרים וניצבים בינן לבין שאיפתן האחת - להתנשק ולהפוך לשתי נסיכות מאוהבות.
מכת צפרדעים 192874
כל תיאוריה שמונעת משתי נשים את שאיפתן להפוך לשתי נסיכות מאוהבות אינה מקובלת עלי. בחזרה לשולחן השרטוטים...
כמובן 192884
לזה התכוונתי מלכתחילה :-)
ננסה את הצפרדעים. 192785
אם אני מבין נכון את המשפט ''לא ניתן להגיע סמוך יותר מאורך הצלע של הסריג הגס ביותר המתאים למצב ההתחלתי.'' הוא לא נכון. תאר לך שלוש צפרדעים על קו ישר אחד ובמרחק שווה - קפיצה של אחת מהקיצוניות מביאה אותה למרחק אפס מזאת שבקצה השני. פלאץץץ. אפשר להכליל את זה בקלות כך שגם הדוגמא שהבאת מסתיימת בכאב ראש רציני לאחת מהצפרדעים.
ננסה את הצפרדעים. 192865
תקן ל"לא ניתן להגיע למרחק חיובי קצר יותר" וגו'. ההוכחה לחידה המקורית בנויה משתי אבחנות: אחת, אם הצפרדעים יושבות על סריג, הן נשארות עליו, ושתיים, אפשר להפוך את חץ הזמן. האבחנה הראשונה (שהיא בעיני החלק הקל בחידה) אומרת בין היתר ששתי צפרדעים *שאינן באותו מקום* (אתה צודק) תהיינה מרוחקות לפחות אורך-הצלע של הסריג. מזה הסקת שהן לא יכולות ליצור ריבוע קטן יותר מההתחלתי, ובגלל חץ הזמן - וזה החלק היפה עליו מגיעות לך ולפותרים האחרים תשואות - גם לא ריבוע גדול יותר.

חזרה לעמוד הראשי המאמר המלא

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים