|
להערה שלך על תורת מספרים סטטיסטית, כבר עושים דברים כאלה (אני לא בקי בפרטים). בכיוון קצת אחר, לפולינומים איפריקים מעל שדות סופיים יש כמה תכונות משותפות עם הראשוניים השלמים; לדוגמא, מספר הגורמים האיפריקים של פולינום אקראי מתפלג פואסונית, כמו מספר הגורמים של מספר אקראי. יש לקשרים האלה הסבר עמוק שקשור בעובדה שכל שדה גלובלי הוא (הרחבה סופית של) אחד משניים: המספרים הרציונליים, או שדה פונקציות במשתנה אחד מעל שדה סופי; הראשוניים שלנו והפולינומים האי-פריקים סופרים את מה שנקרא הערכות-מוחלטות של השדות האלה, מה שמוביל אותנו למיון של שדות לוקליים. (זה המקום להתוודות שמזה זמן אני רוצה לשאול את שכ"ג האם הצמצום שלו לשוטי כפר לוקליים מקיים את עקרון Hasse, אבל חששתי שבדיוק כמו רחובות חד-חד-סטריים, ההומור יתבזבז על הלא-מתמטיקאים שבקוראים).
|
|