בתשובה לעוזי ו., 27/02/03 5:05
מתיוונים 132594
על הפרדוקס של בנך-טרסקי אני יודע רק שהוא הדרך הטובה ביותר לייצר זהב: ניתן לחתוך כדור מוצק (משלושה ממדים או יותר) למספר סופי של פיסות, ואז להרכיב את הפיסות לכדור גדול פי 2 בנפחו. אפשר פרטים? בפרט, האם זה עובד גם אם מתכות רדיואקטיביות ועם אבני-חן? האם אפשר להשתמש בפרדוקס כדי להבטיח שהיקום יתפשט לעד? או כתחליף לסיליקון בניתוחים פלסטיים מסוימים?
מתיוונים 132615
1. את הפיסות אפשר להרכיב לשני כדורים בנפח שווה לכדור המקורי (ולא לכדור אחד כפול בנפחו).
2. מספר הפיסות אינו גדול במיוחד: עשר. מוציאים, מפרידים לחמש בצד אחד וחמש בצד שני, מסובבים, ומרכיבים שני כדורים חדשים (בלי חורים).
3. אותו פירוק קיים גם בכדורים ממימד גבוה יותר מ-‏3.

המשפט שלפיו הפירוק הזה קיים מניח את "אקסיומת הבחירה" (בהנתן קבוצה של קבוצות לא ריקות, אפשר לבחור איבר אחד מכל קבוצה). בלעדיה, אין פירוק כזה.
מתיוונים 132622
הוטעיתי (בעניין הכדור היחיד) ע"י המקור ממנו שמעתי לראשונה על הפרדוקס:
The Magic Machine: A Handbook of Computer Sorcery / A. K. Dewdney

(הבנתי שיש בקהל אנשים שנהנו מ-Metamagical Themas. הספר לעיל הוא אסופה של הטורים שהחליפו את MT ב-Scientific American).

ולעניין: אקסיומת הבחירה היא שמובילה לפרדוקס. אני מניח שהיא בעייתית רק כשמדובר בקבוצות אינסופיות, או במספר אינסופי של קבוצות. מדוע אם כך היא נותרה כאקסיומה, ולא הורדה מגדולתה בעקבות הפרדוקס?
מתיוונים 132624
1. היא בעייתית רק בקבוצות טרנספיניטיות.
2. כי בלעדיה קשה לעשות הרבה דברים נחוצים.
מתיוונים 132635
האקסיומה בעייתית רק כשמדובר על מספר אינסופי של קבוצות‏1 (אינסופיות הקבוצות עצמן אינה רלוונטית). בנך וטרסקי אכן קיוו שהפרדוקס שלהם ישכנע אנשים לוותר על האקסיומה, אבל המזימה לא עלתה בידם.

האקסיומה הזו שקולה למספר תוצאות "טבעיות" אחרות:
* הלמה של צורן (בקבוצה עם יחס סדר, אם כל סדרה עולה היא חסומה, אז יש לקבוצה איבר מקסימלי).
* אקסיומת הסדר הטוב (כל קבוצה אפשר לסדר באופן כזה, שלכל תת-קבוצה יש איבר ראשון).

רוב התחומים במתמטיקה יכולים להתפתח פחות-או-יותר באותה צורה בלי להניח את האקסיומה הזו, אלא שזה מסרבל את הניסוחים ולכן מקובל לצרף גם אותה למערכת.

1 הגירסה החלשה מדברת רק על בחירה מתוך אינסוף בן-מניה של קבוצות.
מתיוונים 132683
ב"אתה בטח מתלוצץ, מיסטר פיינמן!" (מעיין ביוגרפיה לא רשמית ולא שלמה של ריצ'רד פיינמן) פיינמן מנצח בויכוח עם אנשי טופולוגיה בשאלה "האם ניתן לקחת תפוז ולבנות ממנו כדור בגודל של השמש מבלי לחתוך אותו". פיינמן מנחש שאי אפשר וכשהטופולוגיסטים אומרים שכן אפשר בגלל טיעונים כאלה וכאלה, הוא מזכיר להם שהם דיברו על תפוז ותפוז לא ניתן לחלק מתחת לרמת האטומים.

אני מניח שזה עונה גם לשאלה שלך.
132818
לא מדויק:
"...אנחנו חותכים את התפוז למספר סופי של חלקים מחברים אותם מחדש, ומקבלים צורה בגודל השמש..."
המתמטיקאים ביקשו לחתוך את התפוז ועל נקודה זו עומד הקטע
132838
בחייך! לא יכולת לתת מספר עמוד ולחסוך לי את החיפוש (83 אגב)? אתה כמובן צודק, מותר לחתוך.

זה עדיין עונה לטל, לא?

חזרה לעמוד הראשי המאמר המלא

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים