|
||||
|
||||
אקסיומת ההיקפיות: 1) יש זהות בין קבוצות אםם כל איבר ששייך לאחת שייך גם לאחרת. 2) יש שוני בין קבוצות A ו-B, אם קיימת קבוצה C ב-A אך לא ב-B או ב-B אך לא ב-A. מ-(1) ו-(2) אנו למדים כי זהות בלבד אינה מספיקה כדי להבחין בייחודיות קבוצות עפ"י הקבוצות המוכלות בהן, ולכן אקסיומת ההיקפיות אינה יכולה לומר משהו הקשור רק ליחס שבין זהות לשייכות. (1) ו- (2) מתקיימות אםם ניתן להבחין בין זהות לשונות, לדוגמא: אם אנו מבחינים *רק* בשונות הריי ש-{a,a,a,a} מובחן כ-{}. אם אנו מבחינים *רק* בזהות הריי ש-{a,b} מובחן כ-{}. לכן מובחנות היא שילוב של זהות ושונות לכלל מערכת אחת (זיהוי-שונות) המאפשרת הבחנה בייחודיות קבוצה עפ"י איבריה (שלפי ZF הן קבוצות). אקסיומת ההיקפיות "לא תמיד עובדת" ב-(2) לדוגמא: אם אנו בוחנים את יכולתה של אקסיומת ההיקפיות לקבוע את היחודיות בין {1} ל- {2}, אז היות ו-C אינו משתנה חופשי הריי שהוא חייב להיות שונה מ |{{}}|(=1) או שונה מ- |{{{}},{}}|(=2), אך היות וב-{1} ו-{2} אין יותר מאיבר אחד בכל קבוצה, הריי ש-C אינו יכול להתקיים כלל (אפילו לא כקבוצה ריקה), ולכן אקסיומת ההיקפיות תקיפה רק אם A או B הן קבוצות זהות, או שיש הפרש של לפחות איבר אחד בין A ל-B המקיים את C. איזה טעם יש לשמר אקסיומה זו, עם בכל מקרה היא מבוססת על יכולת זיהוי-השונות הטמונה בנו, ואנו משתמשים בכל מקרה ביכולתנו כדי "לסתום חורים" שבהם אקסיומת-ההיקפיות לא-עובדת? |
|
||||
|
||||
1 ו2 הם אותו דבר. דורון, אפילו כשאתה כותב {a,b} אתה משתמש באקסיומת ההקפיות. בלעדיה, אולי יש עוד קבוצה שאיבריה הם רק a ו b ? ואם יש כזו למה אתה מתכוון כשאתה כותב {a,b}? |
|
||||
|
||||
אח של סמיילי: "אפילו כשאתה כותב {a,b} אתה משתמש באקסיומת ההקפיות" אח של סמיילי: "בעולם יש רק 2 איברים ({{1},{2}}). אף אחד מהם לא שייך ל {1}, ואף אחד מהם לא שייך ל {2}. לכן אם אקסיומת ההקפיות היתה נכונה, 2 הקבוצות הנ"ל היו שוות. אבל הן לא." אח של סמיילי הסבר נא את הסתירה הקיימת בדבריך כי אתה טוען דבר והיפוכו, במקרה דנן: {a,b} הינה צורה כללית המייצגת בין השאר גם את {{1},{2}}, אז הסבר נא איך {{1},{2}} אינה מקיימת את אקסיומת ההיקפיות (כדבריך) *וגם* מבוססת (כדבריך) על *הגדרה* המשתמשת באקסיומת ההקפיות ? |
|
||||
|
||||
כבר שאלת אותי את זה ועניתי לך. לא זוכר איפה, אז אני עונה שוב: מותר להשתמש באקסיומה כדי למצוא מודל שבו היא אינה מתקיימת. אין כאן כל סתירה. במקרה שלנו מגדירים את המודל (= העולם) בעזרת אקסיומת ההקפיות, ובעולם זה אקסיומה זו אינה מתקיימת. |
|
||||
|
||||
הפעם הבנתי אותך, תודה. אנא עיין בתגובה 341846 |
חזרה לעמוד הראשי |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |