בתשובה להאייל הצעיר, 12/10/05 20:24
יסודות שפת המתמטיקה 337387
כנראה פספסתי את החלק שבו אתם מגדירים מהו "עוקב". האם ההגדרה היא זו: לכל איבר קיים איבר אחר שנקרא ה"עוקב" שלו כך שקיים איבר אחד שאינו עוקב של אף איבר אחר, ואיבר אינו יכול להיות עוקב של שני איברים גם יחד?

כי אם היא לא, קל מאוד לתת קבוצות סופיות עם עוקבים לכולם (קח את Z_3).

בכלל, מה זה "עוקב של אוסף"? הקבוצה של כל העוקבים של כל אברי האוסף?
יסודות שפת המתמטיקה 337401
ההגדרה שלי לעוקב, היא פונקציה כלשהי (שנסמן בטאג) שעבור כל x מקיימת:
x'≠x
x'≥x
עבור יחס מלא כלשהו.

עבור אף קבוצה סופית אין פונקצית עוקב.
עבור כל קבוצה אינסופית קיימת פונקצית עוקב (ע"פ אקסיומת הבחירה).

הביטוי "עוקב של אוסף" הוא ניסוח מתמטי לא מדויק של דורון. באופן מפתיע ההגדרה הסטנדרטית שלך דווקא מתאימה למה שהוא רצה לומר.
יסודות שפת המתמטיקה 337407
רגע, רגע. מה זה "יחס מלא"? הכוונה שלך ליחס סדר לינארי (כלומר, כזה שבו כל שני איברים ניתנים להשוואה?) זה נראה לי טיפה בעייתי, כי אקסיומת הבחירה אמנם תיתן לך פונקצית עוקב אבל על ידי זה שהיא תגדיר יחס סדר (טוב) משל עצמה. קח למשל את הקבוצה N+w (הטבעיים עם איבר אחרון) - מוגדר עליה יחס סדר מלא, אבל אין עליה פונקצית עוקב (מה העוקב של w?) ובשביל שתהיה לך פונקצית עוקב תצטרך לשנות את יחס הסדר.

קטנוני למדי (לא קשה לתקן את ההגדרה כך שתתקיים עבור סדר טוב, ואולי סתם התבלבלתי) אבל בדיון הזה אי אפשר להבין כלום אם ההגדרות לא ברורות.
יסודות שפת המתמטיקה 337408
התכוונתי "סדר מלא".

עוקב לא צריך להיות מוגדר עבור *כל* סדר מלא. הטענה היא שעבור כל קבוצה אינסופית קיים סדר מלא, שעבורו קיים עוקב. למשל עבור N+w קיים סדר כזה (כל מספר גדול מ-w, והיחס בין כל שני מספרים הוא יחס הסדר הרגיל). וכן, עבור סדר טוב תמיד קיימת פונקצית עוקב.
יסודות שפת המתמטיקה 337414
טוב, ברור שתמיד קיים סדר מלא שעבורו יש פונקצית עוקב כי קיים סדר טוב, והוא בפרט מלא. אם מתעלמים מהסדר הקיים על הקבוצה אז N+w היא פשוט N (והדבר היחיד שמבדיל בין קבוצות הוא הקרדינליות שלהן).

הבעיה היא שדורון מדבר על *ה*עוקב, וכאן ההגדרה דווקא משאירה מקום תמרון להרבה עוקבים שונים. ניחא, עכשיו צריך לברר מה הכוונה ב"צל בין-ערביים".

אבל עזוב, כנראה אנחנו אהבלים כמו קנטור וחבריו.
יסודות שפת המתמטיקה 337415
''אמור לי מי חבריך, ואומר לך מי אתה.''
יסודות שפת המתמטיקה 337418
למה "עפ"י אקסיומת הבחירה"?
יסודות שפת המתמטיקה 337421
יכול להיות שאפשר להוכיח את הטענה בלעדיה. צריך לחשוב על זה.

בעצם עכשיו אני כבר לא בטוח שאפשר להוכיח את זה גם עם אקסיומת הבחירה: צריך קודם להוכיח שעבור כל קבוצה קיים סדר מלא כך שלכל איבר יש איבר גדול ממנו.

אם נניח שהוכחנו את הטענה הזאת, אז זה פשוט: עבור כל איבר קיימת קבוצה לא ריקה של כל האיברים הגדולים-ממש ממנו לפי הסדר המלא שלנו. בוחרים איבר כלשהו מהקבוצה (למשל: מסדרים את הקבוצה הזאת ע"פ סדר טוב, ולוקחים את האיבר המינימלי). הפעולה הזאת היא פעולת העוקב.
יסודות שפת המתמטיקה 337424
אבל לא כל סדר טוב הוא סדר מלא? וזה יש לך ממילא.
יסודות שפת המתמטיקה 337427
לא סתם סדר מלא. "סדר מלא כך שלכל איבר יש איבר גדול ממנו". וגדי נתן הוכחה יפה לטענה בתגובה 337425.
יסודות שפת המתמטיקה 337434
כן, עדיין כל מה שנותנת לך כאן אקסיומת הבחירה זה את משפט הסדר הטוב.
יסודות שפת המתמטיקה 337435
משפט הסדר הטוב שקול לאקסיומת הבחירה.
יסודות שפת המתמטיקה 337438
נכון מאוד. לכן לא ברור לי איזה שימוש נוסף יש כאן לאקסיומה הזאת. (ואגב, האם לא נראה לך שזו בחירה חופשית?)
יסודות שפת המתמטיקה 337439
למה צריך להיות לה שימוש נוסף?
יסודות שפת המתמטיקה 337425
כל סדר טוב הוא סדר מלא על פי הגדרה. אקסיומת הבחירה מבטיחה שיש לך סדר טוב לכל קבוצה. אם הקבוצה אינסופית אין בעיה לקבל את הסדר המלא שאתה מחפש: פשוט תוציא מהקבוצה שלך תת קבוצה בת מניה, תסדר בסדר טוב את האיברים שנשארו, ותוסיף "בסוף" הקבוצה את תת הקבוצה בת המניה שלך כשהיא מסודרת בסדר הטוב הבסיסי (כלומר, איזומורפית ל-N). ככה אתה מבטיח שלא יהיה לך איבר אחרון בקבוצה, ולכן לכל איבר יש עוקב.

בלי אקסיומת הבחירה אני לא חושב שאתה יכול להסתדר עם קבוצות שלא ברור איך למצוא להן "ידנית" סדר טוב, כמו R (שאם אני לא טועה, *הוכיחו* שלא ניתן להציג בצורה מפורשת את הסדר הטוב שלה).
יסודות שפת המתמטיקה 337428
אה, צודק.

חזרה לעמוד הראשי

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים