|
||||
|
||||
יכול להיות שאפשר להוכיח את הטענה בלעדיה. צריך לחשוב על זה. בעצם עכשיו אני כבר לא בטוח שאפשר להוכיח את זה גם עם אקסיומת הבחירה: צריך קודם להוכיח שעבור כל קבוצה קיים סדר מלא כך שלכל איבר יש איבר גדול ממנו. אם נניח שהוכחנו את הטענה הזאת, אז זה פשוט: עבור כל איבר קיימת קבוצה לא ריקה של כל האיברים הגדולים-ממש ממנו לפי הסדר המלא שלנו. בוחרים איבר כלשהו מהקבוצה (למשל: מסדרים את הקבוצה הזאת ע"פ סדר טוב, ולוקחים את האיבר המינימלי). הפעולה הזאת היא פעולת העוקב. |
|
||||
|
||||
אבל לא כל סדר טוב הוא סדר מלא? וזה יש לך ממילא. |
|
||||
|
||||
לא סתם סדר מלא. "סדר מלא כך שלכל איבר יש איבר גדול ממנו". וגדי נתן הוכחה יפה לטענה בתגובה 337425. |
|
||||
|
||||
כן, עדיין כל מה שנותנת לך כאן אקסיומת הבחירה זה את משפט הסדר הטוב. |
|
||||
|
||||
משפט הסדר הטוב שקול לאקסיומת הבחירה. |
|
||||
|
||||
נכון מאוד. לכן לא ברור לי איזה שימוש נוסף יש כאן לאקסיומה הזאת. (ואגב, האם לא נראה לך שזו בחירה חופשית?) |
|
||||
|
||||
למה צריך להיות לה שימוש נוסף? |
|
||||
|
||||
כל סדר טוב הוא סדר מלא על פי הגדרה. אקסיומת הבחירה מבטיחה שיש לך סדר טוב לכל קבוצה. אם הקבוצה אינסופית אין בעיה לקבל את הסדר המלא שאתה מחפש: פשוט תוציא מהקבוצה שלך תת קבוצה בת מניה, תסדר בסדר טוב את האיברים שנשארו, ותוסיף "בסוף" הקבוצה את תת הקבוצה בת המניה שלך כשהיא מסודרת בסדר הטוב הבסיסי (כלומר, איזומורפית ל-N). ככה אתה מבטיח שלא יהיה לך איבר אחרון בקבוצה, ולכן לכל איבר יש עוקב. בלי אקסיומת הבחירה אני לא חושב שאתה יכול להסתדר עם קבוצות שלא ברור איך למצוא להן "ידנית" סדר טוב, כמו R (שאם אני לא טועה, *הוכיחו* שלא ניתן להציג בצורה מפורשת את הסדר הטוב שלה). |
|
||||
|
||||
אה, צודק. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |