|
||||
|
||||
רגע, רגע. מה זה "יחס מלא"? הכוונה שלך ליחס סדר לינארי (כלומר, כזה שבו כל שני איברים ניתנים להשוואה?) זה נראה לי טיפה בעייתי, כי אקסיומת הבחירה אמנם תיתן לך פונקצית עוקב אבל על ידי זה שהיא תגדיר יחס סדר (טוב) משל עצמה. קח למשל את הקבוצה N+w (הטבעיים עם איבר אחרון) - מוגדר עליה יחס סדר מלא, אבל אין עליה פונקצית עוקב (מה העוקב של w?) ובשביל שתהיה לך פונקצית עוקב תצטרך לשנות את יחס הסדר. קטנוני למדי (לא קשה לתקן את ההגדרה כך שתתקיים עבור סדר טוב, ואולי סתם התבלבלתי) אבל בדיון הזה אי אפשר להבין כלום אם ההגדרות לא ברורות. |
|
||||
|
||||
התכוונתי "סדר מלא". עוקב לא צריך להיות מוגדר עבור *כל* סדר מלא. הטענה היא שעבור כל קבוצה אינסופית קיים סדר מלא, שעבורו קיים עוקב. למשל עבור N+w קיים סדר כזה (כל מספר גדול מ-w, והיחס בין כל שני מספרים הוא יחס הסדר הרגיל). וכן, עבור סדר טוב תמיד קיימת פונקצית עוקב. |
|
||||
|
||||
טוב, ברור שתמיד קיים סדר מלא שעבורו יש פונקצית עוקב כי קיים סדר טוב, והוא בפרט מלא. אם מתעלמים מהסדר הקיים על הקבוצה אז N+w היא פשוט N (והדבר היחיד שמבדיל בין קבוצות הוא הקרדינליות שלהן). הבעיה היא שדורון מדבר על *ה*עוקב, וכאן ההגדרה דווקא משאירה מקום תמרון להרבה עוקבים שונים. ניחא, עכשיו צריך לברר מה הכוונה ב"צל בין-ערביים". אבל עזוב, כנראה אנחנו אהבלים כמו קנטור וחבריו. |
|
||||
|
||||
''אמור לי מי חבריך, ואומר לך מי אתה.'' |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |