בתשובה לגדי אלכסנדרוביץ', 08/10/05 22:35
יסודות שפת המתמטיקה 335844
''אני לא רואה שום נימוק שמאפשר להגיד שהעתקת הזהות היא לא התאמה חח''ע ועל,''

זהו בדיוק ההבדל בין אוסף סופי ואוסף אינסופי.

לאוסף אינסופי אין העתקת-זהות כי העוקב מונה תמידית את השלמתה של העתקת זהות זו.

זהותם של אלמנטים באוסף אינה קשורה כלל וכלל להעתקת זהות ע''י מיפוי של אוסף לעצמו, אלא היא נובעת מהאקסיומה המגדירה תכונות מסוימות לאלמנטים, וגודל האוסף הנושא תכונות אלה לא מעלה ולא מוריד מתכונות אלה.
יסודות שפת המתמטיקה 335847
תיקון לתגובה קודמת''

לאוסף אינסופי אין העתקת-זהות כי העוקב מונע תמידית את השלמתה של העתקת זהות זו.
יסודות שפת המתמטיקה 335939
הרשה לי להשיא לך עצה. להבא, כשאתה רוצה לעניין מתמטיקאי בעקרונות השיטה שלך, אני ממליץ *להתחיל* מן ההצהרה ש"לאוסף אינסופי אין העתקת זהות".

הטענה הזו מתייחדת משאר טענותיך בכך שאתה והמתמטיקאי מסכימים זה עם זה בנוגע לפירושה של כל מלה בנפרד (למעט המלה "אין"). בנוסף, היא מעבירה בחטף הררים של אינפורמציה נסתרת. המתמטיקאי יבין מיד (אחרי שיבקש ממך לחזור על הטענה, למקרה ששמיעתו אינה כתמול שלשום) שאתה לא מקבל את האקסיומות המקובלות של תורת הקבוצות, ובפרט את אלו שמאפשרות לבנות קבוצה מרעותה; ושאתה קונסטרוקטיביסט קיצוני שאינו מקבל את קיומן של קבוצות אינסופיות (למעט אולי מקרים פרטיים).

יתכן שבשלב הבא הוא יתהה לדעת האם אתה מתיר לקבוצת המספרים הטבעיים להתקיים (תגובה 335742, "the collection of the Natural numbers"), או שאתה שייך לפלג שכופר גם בקיומה של זו (תגובה 335784, "אוסף *כל* המספרים הטבעיים לא קיים, פשוטו כמשמעו"). בין כך ובין כך תוכלו שניכם לחסוך זמן יקר.
יסודות שפת המתמטיקה 335991
נראה לי שהמתמטיקאים שד''ש שלח אליהם את יצירתו חסכו את הזמן הזה ממילא.
יסודות שפת המתמטיקה 336176
נראה לי שהאדם היחיד באתר הזה עם כלים מתאימים לדיון הנוכחי זו אשתך. אני מציע להזעיקה בדחיפות.
יסודות שפת המתמטיקה 337347
"שאתה לא מקבל את האקסיומות המקובלות של תורת הקבוצות, ובפרט את אלו שמאפשרות לבנות קבוצה מרעותה; ושאתה קונסטרוקטיביסט קיצוני שאינו מקבל את קיומן של קבוצות אינסופיות (למעט אולי מקרים פרטיים)."

עוזי אינני קונסטרוקטיביסט קיצוני אלא מבחין בפשטות רבה (הניתמת להבנה ע"י כל החפץ בכך) כי אוסף אינסופי אינו מהווה מערכת איברים שלמה כאשר הוא מושווה לרצף מוחלט, כי העוקב של אוסף אינסופי חורג *תמידית* (כמו צל בין-ערביים)מתחום האוסף.

חריגה תמידית זו מקיימת אוסף אינסופי, ואוסף זה הוא אינסופי מכיוון שהערך המדוייק של הקרדינל שלו אינו קיים.

קנטור וחבריו לא הבינו כי אי-קיומה של העתקת זהות הינה בדיוק התכונה המפרידה קטגורית בין אוסף אינסופי לאוסף סופי, ומתוך אי-הבנה זו הם כפו תכונות של אוסף סופי על אוסף אינסופי.

אני מציע לך לעיין בזהירות רבה בתגובה 332759

תודה.
יסודות שפת המתמטיקה 337371
"העוקב של אוסף אינסופי חורג תמידית מתחום האוסף."

לא, העוקב חורג מכל קבוצה חלקית סופית של האוסף. או ליתר דיוק: בכל קבוצה חלקית סופית של האוסף, קיים איבר שהעוקב שלו אינו איבר בקבוצה.

זו ה"הפרדה הקטגורית" (לפחות הגדרה אפשרית אחת) בין קבוצות סופיות לקבוצות אינסופיות: בקבוצה סופית לא ניתן להגדיר "עוקב" לכל איבר, ובקבוצה אינסופית אפשר.

חבל שאתה לוקח תכונות שמתקיימות עבור קבוצות סופיות, ומניח אותן אוטומטית עבור קבוצות אינסופיות. ככה אתה מגיע לתוצאות שגויות.
יסודות שפת המתמטיקה 337387
כנראה פספסתי את החלק שבו אתם מגדירים מהו "עוקב". האם ההגדרה היא זו: לכל איבר קיים איבר אחר שנקרא ה"עוקב" שלו כך שקיים איבר אחד שאינו עוקב של אף איבר אחר, ואיבר אינו יכול להיות עוקב של שני איברים גם יחד?

כי אם היא לא, קל מאוד לתת קבוצות סופיות עם עוקבים לכולם (קח את Z_3).

בכלל, מה זה "עוקב של אוסף"? הקבוצה של כל העוקבים של כל אברי האוסף?
יסודות שפת המתמטיקה 337401
ההגדרה שלי לעוקב, היא פונקציה כלשהי (שנסמן בטאג) שעבור כל x מקיימת:
x'≠x
x'≥x
עבור יחס מלא כלשהו.

עבור אף קבוצה סופית אין פונקצית עוקב.
עבור כל קבוצה אינסופית קיימת פונקצית עוקב (ע"פ אקסיומת הבחירה).

הביטוי "עוקב של אוסף" הוא ניסוח מתמטי לא מדויק של דורון. באופן מפתיע ההגדרה הסטנדרטית שלך דווקא מתאימה למה שהוא רצה לומר.
יסודות שפת המתמטיקה 337407
רגע, רגע. מה זה "יחס מלא"? הכוונה שלך ליחס סדר לינארי (כלומר, כזה שבו כל שני איברים ניתנים להשוואה?) זה נראה לי טיפה בעייתי, כי אקסיומת הבחירה אמנם תיתן לך פונקצית עוקב אבל על ידי זה שהיא תגדיר יחס סדר (טוב) משל עצמה. קח למשל את הקבוצה N+w (הטבעיים עם איבר אחרון) - מוגדר עליה יחס סדר מלא, אבל אין עליה פונקצית עוקב (מה העוקב של w?) ובשביל שתהיה לך פונקצית עוקב תצטרך לשנות את יחס הסדר.

קטנוני למדי (לא קשה לתקן את ההגדרה כך שתתקיים עבור סדר טוב, ואולי סתם התבלבלתי) אבל בדיון הזה אי אפשר להבין כלום אם ההגדרות לא ברורות.
יסודות שפת המתמטיקה 337408
התכוונתי "סדר מלא".

עוקב לא צריך להיות מוגדר עבור *כל* סדר מלא. הטענה היא שעבור כל קבוצה אינסופית קיים סדר מלא, שעבורו קיים עוקב. למשל עבור N+w קיים סדר כזה (כל מספר גדול מ-w, והיחס בין כל שני מספרים הוא יחס הסדר הרגיל). וכן, עבור סדר טוב תמיד קיימת פונקצית עוקב.
יסודות שפת המתמטיקה 337414
טוב, ברור שתמיד קיים סדר מלא שעבורו יש פונקצית עוקב כי קיים סדר טוב, והוא בפרט מלא. אם מתעלמים מהסדר הקיים על הקבוצה אז N+w היא פשוט N (והדבר היחיד שמבדיל בין קבוצות הוא הקרדינליות שלהן).

הבעיה היא שדורון מדבר על *ה*עוקב, וכאן ההגדרה דווקא משאירה מקום תמרון להרבה עוקבים שונים. ניחא, עכשיו צריך לברר מה הכוונה ב"צל בין-ערביים".

אבל עזוב, כנראה אנחנו אהבלים כמו קנטור וחבריו.
יסודות שפת המתמטיקה 337415
''אמור לי מי חבריך, ואומר לך מי אתה.''
יסודות שפת המתמטיקה 337418
למה "עפ"י אקסיומת הבחירה"?
יסודות שפת המתמטיקה 337421
יכול להיות שאפשר להוכיח את הטענה בלעדיה. צריך לחשוב על זה.

בעצם עכשיו אני כבר לא בטוח שאפשר להוכיח את זה גם עם אקסיומת הבחירה: צריך קודם להוכיח שעבור כל קבוצה קיים סדר מלא כך שלכל איבר יש איבר גדול ממנו.

אם נניח שהוכחנו את הטענה הזאת, אז זה פשוט: עבור כל איבר קיימת קבוצה לא ריקה של כל האיברים הגדולים-ממש ממנו לפי הסדר המלא שלנו. בוחרים איבר כלשהו מהקבוצה (למשל: מסדרים את הקבוצה הזאת ע"פ סדר טוב, ולוקחים את האיבר המינימלי). הפעולה הזאת היא פעולת העוקב.
יסודות שפת המתמטיקה 337424
אבל לא כל סדר טוב הוא סדר מלא? וזה יש לך ממילא.
יסודות שפת המתמטיקה 337427
לא סתם סדר מלא. "סדר מלא כך שלכל איבר יש איבר גדול ממנו". וגדי נתן הוכחה יפה לטענה בתגובה 337425.
יסודות שפת המתמטיקה 337434
כן, עדיין כל מה שנותנת לך כאן אקסיומת הבחירה זה את משפט הסדר הטוב.
יסודות שפת המתמטיקה 337435
משפט הסדר הטוב שקול לאקסיומת הבחירה.
יסודות שפת המתמטיקה 337438
נכון מאוד. לכן לא ברור לי איזה שימוש נוסף יש כאן לאקסיומה הזאת. (ואגב, האם לא נראה לך שזו בחירה חופשית?)
יסודות שפת המתמטיקה 337439
למה צריך להיות לה שימוש נוסף?
יסודות שפת המתמטיקה 337425
כל סדר טוב הוא סדר מלא על פי הגדרה. אקסיומת הבחירה מבטיחה שיש לך סדר טוב לכל קבוצה. אם הקבוצה אינסופית אין בעיה לקבל את הסדר המלא שאתה מחפש: פשוט תוציא מהקבוצה שלך תת קבוצה בת מניה, תסדר בסדר טוב את האיברים שנשארו, ותוסיף "בסוף" הקבוצה את תת הקבוצה בת המניה שלך כשהיא מסודרת בסדר הטוב הבסיסי (כלומר, איזומורפית ל-N). ככה אתה מבטיח שלא יהיה לך איבר אחרון בקבוצה, ולכן לכל איבר יש עוקב.

בלי אקסיומת הבחירה אני לא חושב שאתה יכול להסתדר עם קבוצות שלא ברור איך למצוא להן "ידנית" סדר טוב, כמו R (שאם אני לא טועה, *הוכיחו* שלא ניתן להציג בצורה מפורשת את הסדר הטוב שלה).
יסודות שפת המתמטיקה 337428
אה, צודק.
יסודות שפת המתמטיקה 335852
כרגיל, אני לא מבין את מה שאתה אומר (*איך* העוקב מונע זאת? לא ברור). סלח לי אם לא אמשיך לעקוב אחרייך בנקודה הזו - אני כבר משוכנע שאתה מדבר בשפה שונה לחלוטין, ועל אובייקטים שונים לחלוטין.
יסודות שפת המתמטיקה 335857
בוודאי שתובנותי ועבודתי הנובעת מהן, עוסקות בתפיסה השונה מהותית מתובנותיו של קנטור בקשר למושג האינסוף.

מעולם לא טענתי אחרת (כפי שאני מסביר בבהירות בתגובה 335742) וכל בקשתי ממך, גדי, הייתה שתנסה ולא פעם אחת, לשים את קנטור בצד ולנסות להבין את עבודתי בנושא, אך כנראה שאינך מסוגל או אינך מעוניין לצאת ולא לרגע אחד מ"ד" אמותיך, וכאשר אתה חש כי אתה קרוב לחריגה מ-"ד" אמותיך, אתה מנתק מגע תוך שימוש בתירוץ זה או אחר.

לצערי גדי, זוהי "תגובת רפלקס" אופיינית של רבים מאנשי קהילת המתמטיקאים הטהורים, אשר אינם מוכנים לזוז כמלוא הנימה בכדי לראות מושגים יסודיים באור שונה בתכלית, וסיבותיהם (אשר לעולם לא יפרטו אותן) עימם.
יסודות שפת המתמטיקה 335895
אני לא מדבר איתך על "התובנות של קנטור", אני מדבר על התובנה האינטואיטיבית *שלי* לגבי מושג הפונקציה. אותה תובנה שנובעת ישירות מהתודעה, שעליה אתה מרבה לדבר. אני תופס פונקציה בראש ובראשונה כהתאמה - לכל איבר מקבוצה A (במשמעות האינטואיטיבית ביותר של קבוצה) אני מתאים איבר מקבוצה B. על פי התפיסה האינטואיטיבית שלי, ניתן להתאים לכל איבר את עצמו.

אני לא צריך את קנטור או את צרמלו-פרנקל בשביל זה. העובדה שהם נותנים ביסוס מדוייק לתחושה הזו שלי היא נהדרת, ובגללה אני חושב שיש ערך גדול לעבודותיהם.

הבעיה היא שאתה לא מסביר לי למה התחושה הזו שגויה, וכרגיל טוען שמדובר בצרות מוחין של המתדיין איתך שמסרב לנסות להבין.
יסודות שפת המתמטיקה 335936
"הבעיה היא שאתה לא מסביר לי למה התחושה הזו שגויה, וכרגיל טוען שמדובר בצרות מוחין של המתדיין איתך שמסרב לנסות להבין."

גדי,

האם אתה מבין שפונקציה הינה בדיוק הגישור של התודעה שלך בין רצף לאוסף, כאשר הגישור מגדיר ON THE FLY את איברים שהוא בוחן, וכי לא קיים אוסף איברים מובחנים במנותק מהפונקציה המגדירה אותם?

שוב: אם נבחן, לדוגמא את אוסף המספרים הטבעיים, הריי שמספרים אלה נקבעים עפ"י אקסיומות המגדירות את תכונותיו של מספר טבעי, כאשר גודל האוסף העונה לתכונות אלה, אינו משפיע כהוא זה על התכונות.

במילים אחרות, שאלת גודלו של אוסף אינה תלויה כלל בתכונותיהם של מרכיביו, ולכן יש להבין את מושג האוסף האינסופי באופן שאינו תלוי בתכונות האיברים של אוסף כלשהו.

מתוך אי-תלות זו, ניתן להבחין מייד כי מושג העוקב אינו תלויי כלל באוסף זה או אחר, וכי קיימת הבחנה קטגורית ברורה לחלוטין בין אוסף סופי לאוסף אינסופי, אשר מונעת כל אפשרות של שימוש בתובנות הקשורות לאוסף סופי והכלתו על אוסף אינסופי.

אוליי הפעם תועיל בטובך לעיין בכל הכתוב ב-http://www.createforum.com/phpbb/viewtopic.php?t=45&... שבו מוסבר בבירור מדוע אין לאוסף אינסופי פונקציית זהות עצמית (ודאת להבדיל מאוסף סופי).
יסודות שפת המתמטיקה 335944
"We know that in order to define 0 and 1 we need to define {} as the successor of itself."

כבר השורה הראשונה בקישור שלך מכילה אמירה מאוד לא ברורה (*למה* צריך להגדיר את {} כעוקב של עצמו? מאיפה "אנחנו יודעים" את זה?). אני חסר את היכולת לקרוא את כל מה שכתוב שם, כנראה.

"האם אתה מבין שפונקציה הינה בדיוק הגישור של התודעה שלך בין רצף לאוסף, כאשר הגישור מגדיר ON THE FLY את איברים שהוא בוחן, וכי לא קיים אוסף איברים מובחנים במנותק מהפונקציה המגדירה אותם?"

אני לא מסכים שפונקציה היא גישור בין רצף ואוסף. למשל, פונקצית הזהות מהטבעיים לעצמם (שעליה אני מסוגל לחשוב באופן אינטואיטיבי) נראית לי כמגשרת בין אוסף לאוסף, לא בין "רצף" (במשמעות שאותה הגדרת: איבר אי פריק) ואוסף.

חזרה לעמוד הראשי

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים