בתשובה לדורון שדמי, 03/10/05 13:26
יסודות שפת המתמטיקה 334610
מה אינסופי בריקנות מוחלטת? מה זה בכלל אינסוף?
יסודות שפת המתמטיקה 334612
"מה אינסופי בריקנות מוחלטת?"

פשטות השורה בכל המורכב ממנה ורציפותה אינה מושפעת מן המורכב ממנה, לדוגמא: הים שורה בגליו, אך קיום הגלים אינו מבטא את רצף הים.

עיין נא בתגובה 334349 על מושג המדידה.

תודה.
יסודות שפת המתמטיקה 334614
לא הבנתי מדברייך מה אינסופי בריקנות מוחלטת.
יסודות שפת המתמטיקה 334615
''לא הבנתי מדברייך מה אינסופי בריקנות מוחלטת.''

פשטות אינסופית.
יסודות שפת המתמטיקה 334617
גם מלאות מוחלטת הינה פשטות אינסופית ולכן פשטות אינסופית הינה המכנה המשותף להפכים מלאות-מוחלטת וריקנות-מוחלטת.
יסודות שפת המתמטיקה 334618
אותה פשטות אינסופית מהווה את הבסיס הקיומי ל''הדחסה'' (אינטגרציה או נטייה למלאות) ול''הדללה'' (דיפרנציאציה או נטיה לריקנות).
יסודות שפת המתמטיקה 334627
מה אינסופי בה?
יסודות שפת המתמטיקה 334635
פשטותה
יסודות שפת המתמטיקה 334636
מצטער, אני לא מסוגל לחשוב על שום מובן מתמטי שבו פשטות היא אינסופית. זה נשמע לי כמו סופרלטיב של שפה טבעית, שפירושו שלא משנה עד כמה נחשוב שדבר מה הוא פשוט, נגלה שהוא פשוט עוד יותר מכך. אשמח אם תסביר איך לדעתך באה ''פשטות אינסופית'' לידי ביטוי.
יסודות שפת המתמטיקה 334640
''...שפירושו שלא משנה עד כמה נחשוב שדבר מה הוא פשוט, נגלה שהוא פשוט עוד יותר מכך''.

נאה דרשת גדי, כי הפשטות האינסופית היא בסיס החשיבה עצמה, ולא ניתן להבינה ברמת החשיבה, אלא תוך התנסות ישירה ובלתי-אמצעית (שלא ע''י מחשבה) בה איננה מחשבה, בדיוק כמו שהים אינו גליו אלא מקורם.
יסודות שפת המתמטיקה 334641
הריי המתמטיקה הטהורה שואפת להפשטה עמוקה יותר ויותר של מושגיה, אך לא ניתן להפשיט את הפשטות לכשעצמה, אחרת מושג זה לא היה קיים כלל.
יסודות שפת המתמטיקה 334644
תיקון הסבר:

הפשטות האינסופית היא בסיס החשיבה עצמה, ולא ניתן להבינה ברמת החשיבה, אלא תוך התנסות ישירה ובלתי-אמצעית (שלא ע"י מחשבה) בה.

היא איננה מחשבה, בדיוק כמו שדיבורים על דממה אינם דממה.
יסודות שפת המתמטיקה 334646
ובכל זאת אני לא רואה סיבה טובה לכנות את הפשטות הזאת ''אינסופית''.
יסודות שפת המתמטיקה 334652
''ובכל זאת אני לא רואה סיבה טובה לכנות את הפשטות הזאת ''אינסופית''.''

נהפוכו, רק פשטות זו זכאית לתואר אינסופית, כאשר כל המורכב ממנה, אינסופיותו איננה אלא שאיפה בלתי מושגת לפשטות.
יסודות שפת המתמטיקה 334655
יפה, עכשיו אני משוכנע שמה שאתה מדבר עליו כשאתה מדבר על "אינסוף" לא קשור למושג המתמטי שנקרא "אינסוף".

אני יודע מה אתה עשוי להגיד עכשיו: שה"אינסוף" המתמטי הוא טעות ולא נכון והאינסוף שלך הוא כן נכון. אם כן, אתה מוזמן לקרוא לאינסוף המתמטי "איסנוף", אבל עלייך להכיר בכך שהרבה יותר מעניין (לפחות את רוב המתדיינים כאן) לדבר על "איסנוף" ולא על "אינסוף".
יסודות שפת המתמטיקה 334659
דווקא במובן מסוים הוא כן קשור. לפי התפיסה של דורון ‏1 אנחנו יכולים לחשוב על כל רמה של פשטות בקטע פתוח כלשהו, בעוד שהפשטות המוחלטת לא בקטע הזה. אם נסמן את הקטע כ-(מינוס אינסוף, אינסוף) אז נוכל לסמן את הפשטות המוחלטת כאינסוף.

1 למעשה זה היה ניסוח שלך בתגובה 334636, אבל דורון קיבל אותו.
יסודות שפת המתמטיקה 334660
לא הבנתי. מה ז"א "לחשוב על כל רמה של פשטות בקטע פתוח כלשהו"?
יסודות שפת המתמטיקה 334664
לא משנה עד כמה נחשוב שדבר מה הוא פשוט, נגלה שהוא פשוט עוד יותר מכך. כלומר, אם אנחנו מצמידים *במחשבה* לכל "דבר מה" ערך פשטות ממשי, הרי שלמשהו פשוט לחלוטין לא מתאים אובייקטיבית אף ערך פשטות ממשי (וראוי לסמן את ערך הפשטות שלו כאינסוף). מאחר שאנחנו לא יכולים לחשוב ש"למשהו יש פשטות אינסופית" (לפי דורון), הרי שאנחנו לא יכולים לתפוס במחשבה פשטות אינסופית.

סתם הופתעתי מהעובדה שיש קשר אסוציאטיבי (לפחות עבורי) בין מושג שבו משתמש דורון לבין משמעותו המתמטית.
יסודות שפת המתמטיקה 334677
פירוש יפה, ואפילו משתלב טוב עם שאר דבריו של דורון: האינסוף הזה הוא באמת לא אותו אינסוף במשמעות של "קרדינל אינסופי", אלא יותר במשמעות של האינסוף באינפי - תוצר של תהליך שאיפה כלשהו.

למרות שאני מניח שאפשר לראות אותו גם כאורדינל w או כנקודה שמוסיפים בקומפטיפיקציה ע"י נקודה אחת של הישר הממשי או משהו דומה.
יסודות שפת המתמטיקה 334680
אם רואים אותו באמצעות אורדינלים, לדוגמה, זה פוגע ב''מוחלטות'' שלו.
יסודות שפת המתמטיקה 334683
בעסה. אז ההגדרה שלך נופלת, לדעתי.
יסודות שפת המתמטיקה 334689
למה?
יסודות שפת המתמטיקה 334693
כי אתה בסך הכל מוסיף למערכת המספרים הממשיים מספר אחד (''אינסוף'') שמבחינת יחס הסדר של הממשיים, גדול מכל איבר בהם. אני לא בטוח במאה אחוזים שבסדר לקרוא לאינסוף הזה ''אורדינל'' (כי כשאומרים לי ''אורדינל'' אני חושב על ''הכללה של מספרים טבעיים''), אבל אני לא רואה שום מניעה לראות אותו בתור, נניח, נקודה ש''מדביקה'' את שני הקצוות של הישר הממשי זה לזה וסוגרת מעגל (זו קומפקטיפיקציה של הישר הממשי).

אם אתה מנסה לייחס לאינסוף הזה תכונות כמו ''מוחלט'' שבעצם אומרות עליו בעיקר שאי אפשר להגיד עליו כלום, לא נראה לי שאתה יכול להגיד עליו משהו.
יסודות שפת המתמטיקה 334697
נכון, אין שום מניעה. אבל כל הכיף זה לנסות לקשר את התפיסה של דורון עם מושגים קיימים, שאנחנו רגילים להשתמש בהם. נוח לדבר בהקשר הזה על המספרים הממשיים בתוספת אינסוף ומינוס אינסוף, כי זו קבוצה שאנחנו רגילים לעבוד איתה. לעומת זאת, כשאתה מדבר על סודרים, קשה לי להתעלם מהקיום של ω+1, כי אני לא רגיל לעבוד עם קבוצת הטבעיים בתוספת ω.

לגבי הפיסקה האחרונה: אני לא מתכוון ל"מוחלטות-שדמי". ב"פשטות מוחלטת" אני מתכוון לכך שלפי דורון פשטות אינסופית היא רמת הפשטות המקסימלית.
יסודות שפת המתמטיקה 334702
נו, ה''אינסוף ומינוס אינסוף'' שמוסיפים לממשיים הם דווקא אובייקטים מתמטיים די אלמנטרים שקל מאוד לעבוד איתם ולתת להם תכונות.

כשאומרים ''רמת הפשטות המקסימלית'' זה בעייתי, הן משום שלא ברור ביחס למה הפשטות הזו היא ''מקסימלית'' (כלומר, איך מתבצעת המדידה) וחשוב יותר - מכיוון ששום דבר לא מבטיח שיש מקסימום (בעוצמות, למשל, קנטור הראה שאין ''מקסימום'').
יסודות שפת המתמטיקה 334712
לפי התפיסה השדמית, אנחנו יכולים לחוות את הפשטות המוחלטת, ולכן היא בהכרח קיימת, והיא רמת הפשטות המקסימלית.
ואיך אנחנו מבצעים את המדידה? אנחנו פשוט חווים את הפשטות.
יסודות שפת המתמטיקה 334719
מקובל, אבל אז זה לא נשמע כמו מתמטיקה, אלא יותר כמו ניו אייג'. כמובן ששדמי יכול לטעון שזו המתמטיקה ה''אמיתית'' היחידה ושכולנו נופלים קורבן לחשיבה הפורמליסטית הממיתה.
יסודות שפת המתמטיקה 334918
"אבל אז זה לא נשמע כמו מתמטיקה, אלא יותר כמו ניו אייג'." - וזה מפתיע אותך?

דורון פשוט טוען שיש דברים שקיימים, ושאנחנו יכולים לחוות אותם, אבל אין לנו יכולת לחשוב עליהם. לכל היותר אנחנו יכולים לדבר עליהם אחרי (או בזמן) שאנחנו חווים אותם.

ה"חוויה" המרכזית שעליה מתבסס דורון היא היותו של הזכרון "רצף".
יסודות שפת המתמטיקה 334772
היות ופשטות זו אינה דואלית, לא יתכן בה מצב של מודד ונמדד, לכן אם התודעה חובה את הפשטות הרי שהיא הפשטות, והיות ופשטות זו אינה יחסית, היא המכנה המשותף של כל תודעה, כמו שפוריות האדמה אינה זמינה רק לצמח מסויים המבטא אותה.
יסודות שפת המתמטיקה 334706
'' אני מתכוון לכך שלפי דורון פשטות אינסופית היא רמת הפשטות המקסימלית.''

פשטות אינסופית איננה רמה באוסף אינסופי של רמות פשטות.

שוב, לא ניתן לשייך לה דבר הקשור לאוסף, כולל המושג ''רמה''.

כל מה שניתן להגיד עליה הוא שהיא מוחלטת, כאשר המוחלט אינו קיים ביחס לשום דבר שאינו הוא עצמו, ולכן הוא הבסיס הטבעי לאינסוף רמות פשטות, שלאף אחת מהן אין מעמד מוחלט.
יסודות שפת המתמטיקה 334730
שים לב לדמיון בין האופן בו אתה מדבר על המושגים הבסיסיים בתורה שלך, לבין האופן בו מדבר התאולוג על המושגים הבסיסיים בתורה שלו. קח לדוגמא את האל משולל התארים, אשר לא ניתן להגיד עליו דבר מלבד סופרלטיבים ריקים ואמירות שוללות תוכן (אינסופי, מוחלט, יחיד-כולל-כל-ואטומיסטי, איננו א', איננו ב',... לא ניתן לדבר עליו במושגים של...).

במה החוויה שלך את "הפשטות/המורכבות האינסופית" שונה מחוויתו של המאמין את "ההשגחה העליונה"?
יסודות שפת המתמטיקה 334731
דורון מרבה להזכיר כאן בלעג את קנטור ש(לדבריו) סירב להתעסק באינסוף המוחלט מכיוון שזיהה אותו עם אלוהים. אני חושב שדורון עושה את אותו הדבר, רק שבניגוד לקנטור דורון לא רק מעז להתעסק עם אותו מוחלט, אלא גם סבור שהוא מבין אותו לחלוטין באופן בלתי אמצעי ומבלי שיצטרך לחשוב על כך בצורה לוגית. נראה לי שפעם קראו לזה ''נביא''.
יסודות שפת המתמטיקה 334759
"דורון מרבה להזכיר כאן בלעג את קנטור"

על איזה לעג אתה מדבר?

כל מה שהראיתי קשור ישירות להחלטות שהחליט בזמנו קנטור, כאשר החל ליצור את תורת הקבוצות, ובהם ההחלטה שלא לעסוק במוחלט.

אינני לועג להחלטתו אלא אומר בפשטות כי החלטה זו מנעה ממנו הבנה מדוייקת של מושג האינסוף והובילה אותו להרחבה מאולצת של מושג הקשור לאוסף סופי, והכלתו על אוסף אינסופי ואני מתכוון לקיום הערך המדוייק של הקרדינל של קבוצה.

היות וקנטור נמנע מלעסוק ברצף כיסוד בלתי-מורכב, הוא לא הבין כי אוסף אינסופי שונה קטגורית מאוסף סופי בכך שהקרדינל המדוייק של אוסף אינסופי אינו קיים, ואילו הקרדינל המדוייק של אוסף סופי קיים.

המנעות זו הובילה אותו להגדרת הטרספיניטים, ולאיבוד העושר הגלום באוספים אינסופיים כפי שמודגם במתמטיקה-המונדית.
יסודות שפת המתמטיקה 334920
בוא ננסה משהו אחר: אתה מסכים שבין קבוצות אינסופיות שונות (ניקח לצורך הדיון את קבוצת הטבעיים ואת קבוצת השלמים) יכולה להיות התאמה חד-חד ערכית ועל?
יסודות שפת המתמטיקה 335742
הפעם אייל צעיר, ברשותך, נסטה מדרך המלך המקובלת (א-לה-קנטור) ונתבונן באוסף אינסופי מנקודת המבט של הקבוצה-המלאה.

היות ושום אוסף אינסופי אינו יכול להשיג את האינסוף המוחלט של הרצף, הריי שכל אוסף אינסופי הוא בלתי-שלם מעצם טבעו, או ליתר דיוק, הקרדינל המדוייק שלו אינו קיים.

במקום קרדינל בעל ערך מוגדר היטב (כפי שאנו מוצאים במקרה של קרדינל של אוסף סופי) הקרדינל של אוסף אינסופי הוא "דמויי-ענן" כאשר המשמעות של הגדרה זו היא, שבמקום ALEPH0 מתקיים בסיס לא-מוגדר (שנסמן אותו כ-@) לאינסוף אוספים, כאשר ההבדל ביניהם נקבע עפ"י פעולות אריתמטיות בעלות ערכים סופיים, המופעלות על @.

הנה קטע מדו-שיח (http://www.createforum.com/phpbb/viewtopic.php?t=45&...) בנושא זה:

Let us take for example the non-finite collection of the Natural numbers.

The Successor of this collection is notated as +1, because the simplest structure of the Natural numbers is the non-composed and non-finite collection that is notated as {1,1,1,1,1,…}+1, where +1 (the Successor) is the permanent next element, the existence of which was proven by Cantor’s second Diagonal method.

If the Identity map of a non-finite collection does not exist, then its exact cardinality does not exist and the Natural numbers’ cardinality is |N|-Successor, because the Successor is permanently out of our desirable “complete” domain.

Let @ be |N|-Successor

If A = @ and B = @-2^@, then A > B by 2^@, where both A and B are collections of infinitely many elements.

Also 3^@ > 2^@ > @ > @-1 etc.

So as we can see, in my universe I have both non-finite collections and unique arithmetic between non-finite collections, which its result is always a non-finite collection.

My results are richer than the Cantorean transfinite universe, for example:

By Cantor aleph0 = aleph0+1 , by me @+1 > @ .

By Cantor aleph0<2^aleph0 , by me @<2^@ .

By Cantor aleph0-2^aleph0 is undefined, by me @-2^@ < @ .

By Cantor 3^aleph0 = 2^aleph0 > aleph0 and aleph0-1 is problematic.

By me 3^@ > 2^@ > @ > @-1 etc.

|{{1,1,…}+1, 1,1,1}| > |{{1,1,…}+1}| by |{1,1,1}|.

|{{1,1,…}+1,{1,1,…}+1}| = |{{1},{1}}|•@ > |{{1,1,…}+1}| by |{1}|•@ and
|{{{1,1,…}+1, 1,1,…}+1}| = |{{1},1}|•@ > |{{1,1,…}+1}| by |{1}|•@ but they have different internal structures
( {{1},{1}} and {{1},1} ).

For further information, please read http://www.geocities.com/complementarytheory/Success... .

We can ask:

What is the difference between {}, {}+{}, {{}} or {{},...}+{}?

Answer:

{} is the empty set.

{}+{} is the permanent existence of {} as an empty set.

{{}} is some particular example of a finite and non-empty set.

{{},...}+{} is the permanent existence of {{},...} as a non-empty and non-finite set.

אודה לך, אם הפעם תקדיש מזמנך, כדי לנסות ולהבין את גישתי למושג העוקב, אשא אינה עולה בקנה אחד עם הגישה המקובלת, המבינה את העוקב כאיבר השייך לאוסף, ולא כאלמנט החורג תמידית משייכותו לאוסף נתון, ודווקא חריגה תמידית זו היא המעניקה לאוסף את תוכנו האינסופית.
יסודות שפת המתמטיקה 335751
"היות ושום אוסף אינסופי אינו יכול להשיג את האינסוף המוחלט של הרצף, הריי שכל אוסף אינסופי הוא בלתי-שלם מעצם טבעו, או ליתר דיוק, הקרדינל המדוייק שלו אינו קיים."

כבר את המשפט הראשון, שמהווה בסיס לכל השאר, אני לא יכול להבין, כי אני לא יודע למה *אתה* קורא קרדינל. למרות ששאלתי כבר לא מעט פעמים, אני לא קיבלתי ממך תשובה. אז בוא ננסה דרך אחרת: אני אסביר לך למה *אני* קורא "קרדינל" ‏1, ואתה תגיד האם אנחנו מדברים על אותו דבר.

אם תראה לי שהדבר שאני קורא לו קרדינל לא קיים עבור קבוצה אינסופית, זו תהיה תוצאה מעניינת, שאני אלמד ממנה משהו (אני אפיק ממנה תובנות חדשות).
אם תראה ש*משהו אחר* שאתה קורא לו "קרדינל" לא קיים עבור קבוצה אינסופית, זה לא בהכרח יהיה מרשים ‏2, ואני לא בהכרח אלמד מזה משהו חדש.

וגם אם לא נסכים על משמעות המושג "קרדינל", אולי תשכיל ותלמד על תכונות מסוימות של קבוצות אינסופיות.

אז נתחיל: האם אתה מסכים שבין קבוצות אינסופיות שונות (ניקח לצורך הדיון את קבוצת הטבעיים ואת קבוצת השלמים) יכולה להיות התאמה חד-חד ערכית ועל?

1 אני מעדיף את המילה העברית "עוצמה", אגב.
2 ואם זה כן יתברר כגילוי מעניין, אז כדאי לתת למושג החדש שם אחר.
יסודות שפת המתמטיקה 335784
"כבר את המשפט הראשון, שמהווה בסיס לכל השאר, אני לא יכול להבין"

אני רואה שאינך מנסה לעשות ולו צעד אחד קטן מעבר לשיטת-המיפוי שפיתח קנטור, כדי לקבוע את את הגדלים (או העוצמה) בין קבוצות.

אתה מתעלם לחלוטין מהאופן שבו אני מציג את מושג העוקב, שמימנו נובע באופן ברור לחלוטין כי לא ניתן להרחיב את שיטת המיפוי כדי להסיק דבר כלשהו בקשר לאוסף אינסופי, כי אוסף אינסופי כלשהו (כולל המספרים הטבעיים) אינו ניתן למנייה, כי מנייה זו אינה נתנת להשלמה, ללא כל קשר לזמן העומד לרשותנו, אלא כי אוסף *כל* המספרים הטבעיים לא קיים, פשוטו כמשמעו.

את תובנותי אני מסביר בבהירות רבה בתגובה הקודמת בנושא זה (ראה קישור), ואם אתה בוחר להמשיך בסגנון של "כבר את המשפט הראשון ..." מבלי לטרוח לנסות להבין את התגובה, לא נוכל לדון בנושא.
יסודות שפת המתמטיקה 335791
מה אני אמור לעשות, להתעלם מהמשפט הראשון? או.קיי.

אז בוא נעבור פיסקה-פיסקה, אני אגיד מה לא ברור לי, אתה תסביר לי, ונמשיך לאט-אבל-בטוח לפיסקה הבאה, טוב?

<פיסקה 1>

"The Successor of this collection is notated as +1, because the simplest structure of the Natural numbers is the non-composed and non-finite collection that is notated as {1,1,1,1,1,…}+1, where +1 (the Successor) is the permanent next element, the existence of which was proven by Cantor’s second Diagonal method."

א. אני אשמח לשמוע מה משמעות הסימון {1,1,1...}. למיטב הבנתי ככה אתה מסמן את קבוצת המספרים הטבעיים, לא?
ב. אתה מתייחס פה ל*עוקב של קבוצה*, ולא של מספר, נכון? כדאי לשים לב לזה. אתה גם טוען שאם ניקח את קבוצת הטבעיים, ואת העוקב שלה, והעוקב שלה, והעוקב שלה, וכו', לא נוכל לקבל קבוצה, נכון?
אז אני מסכים איתך! גם זה תחום שנחקר ע"י קנטור ונקרא "סודרים" (ולא "עוצמות") או בלעז "אורדינלים" (ולא "קרדינלים") וקנטור הגיע בדיוק לאותן מסקנות כמוך.
ג. תוכל לפרט מהו "האלכסון השני של קנטור"? אני לא מכיר את השם הזה.
יסודות שפת המתמטיקה 335803
א. {1,1,1...} 1+ (נתעלם מהכיוון ימין,שמאל) הינו האוסף העומד בבסיס המספרים הטבעיים, כאשר המספרים הטבעיים אינם אלא "אריזה" של אוסף זה כאוסף אינסופי של אוספים סופיים.

אי-שלמותו של אוסף זה, תקיפה קודם כל לגבי מושג הכמת הקרדינל, ולא לגבי מושג האורדינל כי ב- {1,1,1...} 1+ אין משמעות להגדרת סדר אלא לנסיון הגדרת כמות, שכאמור לא ניתן להגדרה מדוייקת במקרה של אוסף אינסופי.

ב. האלכסון השני של קנטור מנסה להראות כי לא ניתן למצוא מיפוי של 1-1 ועל בין המספרים הטבעיים למספרים האי-רציונליים כי תמיד קיים מספר אי-רציונלי שהוא מחוץ לטווח של המספרים הטבעיים (האלכסון הראשון, הוא בין המספרים הטבעיים למספרים הרציונליים).

אני משתמש באלכסון השני של קנטור כדי להראות כי זוהי תכונה מובנית של אוסף אינסופי, ולכן אוסף אינסופי איננו בר-מנייה מעצם טבעו.
יסודות שפת המתמטיקה 335808
א. אני לא לגמרי הבנתי. תוכל להראות איך נראה אוסף המספרים הטבעיים תוך שימוש ב"אוסף הבסיס" הזה?
ב1. אבל *יש* התאמה חד-חד ערכית ועל מקבוצת הרציונליים לקבוצת הטבעיים! (אם אתה טוען שלא, תוכל להראות את ההוכחה?)
ב2. תוכל להראות את ההוכחה שאין התאמה חח"ע ועל בין אף קבוצה אינסופית לקבוצת הטבעיים?

(הערה קטנונית: מאחר שאתה לא מדבר רק על המספרים האי-רציונליים, כדאי להשתמש במושג "המספרים הממשיים")
יסודות שפת המתמטיקה 335819
"הערה קטנונית:"

היות והמספרים הממשיים כוללים גם את המספרים הטבעיים, המיפוי לפי קנטור הוא בין הטבעיים לאי-רציונלים.

א.
1 = |{1}|
2 = |{1,1}|
3 = |{1,1,1}|
...

{3,2,1,...} ~ {{1},{1,1},{1,1,1},...}

ב1. התאמה חד-חד ערכית ועל תיתכן רק ואך ורק בין איברי אוספים סופיים, והיא בפירוש לא ניתנת להרחבה לאוספים אינסופיים.

הסימון ,...} אינו מציין בעיה טכנית של אי-יכולתנו לרשום את כל איבריו של אוסף אינסופי, אלא הוא מציין שאוסף אינסופי אינו שלם מעצם טבעו (אינו בר-מניה מעצם טבעו).
יסודות שפת המתמטיקה 335828
א. אז אם היינו ממשיכים בפעולת העוקב עד אינסוף, היינו "מגיעים" ל-{1,1,1,1,1...}? וגם לו יש עוקב? וגם לו? וכל העוקבים האלה אינם אוסף? אם כן, אז הבנתי ואני מקבל.

ב. אמרת שאת זה אפשר להוכיח בעזרת אלכסון קנטור. ביקשתי שתראה לי את ההוכחה.

---

לגבי ה"הערה קטנונית":
1. יש בעיה למפות קבוצה לקבוצה חלקית לה?
2. אם יש, אז אפשר להוכיח שאין החחעו"ע בין קבוצת הטבעיים לקבוצת המספרים הממשיים בין 0 ל-‏1.
יסודות שפת המתמטיקה 335841
ב. http://www.createforum.com/phpbb/viewtopic.php?t=45&...
יסודות שפת המתמטיקה 335845
נדמה לי שזו קפיצה לפסקאות הבאות, ואנחנו עדיין בפיסקה הראשונה מתוך תגובה 335742.
אם כך, הייתי מבקש לקרוא את ההוכחה עצמה ללא תוספות, בעברית, על גבי "האייל", אם לא קשה לך.
יסודות שפת המתמטיקה 335848
"נדמה לי שזו קפיצה לפסקאות הבאות,"

לא, זוהי בדיוק התשובה לשאלתך!

אייל צעיר,

האם קשה לך לקרוא את עבודתי באנגלית?
יסודות שפת המתמטיקה 335855
אני בטוח שבתוך כל הטקסט הזה (4 עמודים) מסתתרת לה התשובה לשאלה שלי. יחד איתה, מופיעות שם כל הפסקאות הבאות, ועוד הררי טקסט לא רלוונטי. זו נראית לי דרישה מוגזמת לקרוא כל כך הרבה טקסט, באנגלית ‏1, עם מונחים מתמטיים שאני לא מכיר, עם קפיצות לוגיות, שכולל המון מידע לא רלוונטי.

אני אשמח אם פשוט תכתוב כאן את ההוכחה ‏2.

1 כן, העובדה שזה באנגלית גוזלת ממני עוד אנרגיה.
2 אפשרות אחרת: תגיד שלא צריך להבין לגמרי את הפיסקה הזאת כדי להבין את הפיסקאות הבאות, אלא היא הקדמה שמתארת את מה שהפיסקאות הבאות יוכיחו.
יסודות שפת המתמטיקה 335874
"אני אשמח אם פשוט תכתוב כאן את ההוכחה ‏2."

An open domain is a domain that includes at least one non-finite collection.

A closed domain is any collection of finitely many finite elements.

For example:

{{},{},{{},{},{}}} is a closed domain

{{{},{},{},…}+{},{},{},{{},{},{}}} is an open domain.

An open domain does not have an Identity map.

A closed domain has an Identity map.

We have to understand that these conclusions, which are based on a research of the simplest possible collections, are definitely deeper, simpler and more rigorous than the Cantorean approach about the non-finite.

If you disagree with me, then you have to show how a non-finite and non-nested collection includes within its domain all of {} elements, while at the same time its Successor (+{}) exists out of its domain, because it has to be clear that if a Successor does not exist out of the domain of this collection, then this collection is definitely a finite collection.

Some example:

Let us say that we have a non-finite collection of non finite collections, for example:

{
{{},{},{},…}+{}
{{},{},{},…}+{}
{{},{},{},…}+{}

}+{{},{},{},…}+{}

As we can see, in this case the Successor is a one non-finite collection, which is out of the domain of the non-finite collection of non-finite collections.

This state holds in any nested degree, and we can clearly see that we get a fractal-like structure of infinitely many nested levels, none of which can be completed.

Another example:

Let us use Cantor's second diagonal method in order to prove that the Identity map of a non-finite collection does not exist:

Let us say that we have a non-finite collection which is composed of unique non-finite collections (where each non-finite collection has a unique order of empty and non-empty sets) for example:

{

{{ },{ },{ },{ },{ },...}
{{#},{ },{ },{#},{ },...}
{{ },{#},{#},{ },{ },...}
{{#},{#},{ },{#},{#},...}
{{ },{ },{#},{ },{ },...}

...

}

We can define another unique non-finite collection which is actually the non-finite diagonal opposite collection
{{#},{#},{ },{ },{#},...} , that has to be added to our non-finite collection, then we can define another opposite unique non-finite diagonal collection that has to be added to the non-finite collection, etc., etc. ... ad infinitum.

It is clearly understood that the Identity-map of a non-finite collection, which is composed by unique non-finite collections, does not exist, and the notation below is the general representation of this proof.

Q.E.D

{
{{},{},{},…}+{}
{{},{},{},…}+{}
{{},{},{},…}+{}

}+{{},{},{},…}+{}
יסודות שפת המתמטיקה 335882
"An open domain does not have an Identity map" - הוכחה בבקשה.
יסודות שפת המתמטיקה 335888
אייל צעיר זה לא ילך ככה.

אתה מסרב לקרוא את http://www.createforum.com/phpbb/viewtopic.php?t=45&... וכתוצאה מכך אתה מעלה שאלות שהתשובות להן ניתנות בפשטות ובבהירות בנ"ל.

אני לא הולך להעתיק יותר *קטעים* מעבודתי לאייל-הקורא, אשר מונעים ממך מלהבין אותה.

אם אינך רוצה לקרוא את הקישור הנ"ל *במלואו* לפניי שאתה שואל את שאלותיך, אינני רואה שום טעם להמשיך בדיון איתך.
יסודות שפת המתמטיקה 335899
קראתי. הבנתי חלק מהמושגים שלך. זה אפילו התחבר במידה מסוימת לדברים שדיברנו עליהם בעבר. אבל את ההוכחה לא קיבלתי.
כשאני קורא הוכחה, אני אף פעם לא עובר לטענה הבאה, אם אני לא מקבל את הוכחת הטענה הנוכחית. אם ההוכחה של אותה טענה לא מופיעה באותו מסמך, אני פונה לעזרת האינטרנט, לעזרת ספרים או לעזרת מומחה גדול ממני. מאחר שה''משפט'' הזה לא ידוע, הוא לא מופיע באינטרנט, ובטח שלא בספרים, אז אני הולך אל המומחה. אם המומחה הוא זה שכתב את ההוכחה שאותה אני מנסה לקרוא - על אחת כמה וכמה.

בקיצור, אני אשמח אם תנהל איתי את אותו דיאלוג שעליו אתה מדבר כל הזמן.
יסודות שפת המתמטיקה 335905
"אבל את ההוכחה לא קיבלתי."

לפי מה אתה מחליט שלא קיבלת הוכחה?
יסודות שפת המתמטיקה 336153
נתחיל מזה שלא *ראיתי* הוכחה לטענה לפיה לקבוצה אינסופית אין התאמת-זהות.
יסודות שפת המתמטיקה 335894
קראתי את ההוכחה, ושוב לא הבנתי. קודם כל זאת נראית כמו הוכחה על ידי דוגמא (ות), ולא הוכחה כללית.
דבר שני אני לא בטוח שאני מבין מה אתה מוכיח - שאין העתקת הזהות על קבוצה אינסופית?
אם כן, אז אולי לא ברור לי מה זה העתקה אצלך?
אולי אצלך העתקה זה רק משהו שאפשר לכתוב בדיוק מה הוא עושה, על ידי טבלה? אם כן, אז ברור שאין העתקה כזו. אם לא אז לא הבנתי מדוע f(x)=x אינה קיימת אצלך.
אבל אם באמת הדברים היחידים שקיימים הם סופיים, (או הרצף - שלא הבנתי לגמרי מהו), אז מה בכלל תורת הקבוצות שלך יכולה להשיג? אולי תשנה לה את השם לתורת המספרים? (ואז אתה תרשה הוכחות על ידי אינדוקציה? או שגם זה אסור כי זה אינסופי?).
מלבד זה עוד לא ענית לי על השאלות שלי על ONN (ראה תגובה 334883).
יסודות שפת המתמטיקה 335904
"קראתי את ההוכחה, ושוב לא הבנתי."

האם קראת את *כל* http://www.createforum.com/phpbb/viewtopic.php?t=45&... ?

האח של סמיילי.

הוכח נא שאתה מסוגל להפעיל ריגורוזית אמצעי כלשהו אשר מסוגל לעבור על *כל* איברי R ללא יוצא מן הכלל, כאשר ברור לחלוטין כי איברי R מובחנים היטב זה מזה.

"אבל אם באמת הדברים היחידים שקיימים הם סופיים,"

לא ולא, במערכת שלי יש לפחות שלוש רמות-קיום:

א) אוסף סופי של איברים מובחנים (לדוגמא:{54.56,4,0})

ב) אוסף אינסופי של איברים מובחנים (לדוגמא R).

ג) רצף אינסופי (לדוגמא {__}).

כמו-כן קיים מרחב בין אוסף לרצף, המתקיים כגישור בין SET ל-MULTISET.
יסודות שפת המתמטיקה 335917
לא קראתי. חשבתי שההוכחה שנתת כאן הספיקה (היא הסתימה ב QED!).
למה אתה קורא אמצעי אשר מסוגל לעבור על כל אברי R?

אם אתה מתכוון לשאול האם יש פונקציה 1-1 בין R ל N, אז כמובן שאין. אבל אני חושד שגם אם נחליף את האות R באות N במשפט שלך, אתה עדיין תטען שאין אמצעי כזה וכו'. אז אני חוזר ושואל, למה הכוונה אמצעי?

אם כך, האם הרצף הוא אוסף אינסופי של איברים שאינם מובחנים זה מזה?
יסודות שפת המתמטיקה 335921
"אם אתה מתכוון לשאול האם יש פונקציה 1-1 בין R"

לא, בין R לעצמו, א\ואל נא תגיד לי כי זה מובך מאליו, כי לא קיימת שום פונקציה בעולם שבעזרתה אתה יכול להוכיח כי אתה מסוגל לעבור מאיבר R לאיבר R אחר מבלי לדלג על שום איבר R "בדרך".

"אם כך, האם הרצף הוא אוסף אינסופי של איברים שאינם מובחנים זה מזה?"

בשום אופן לא!

רצף אינו אוסף אלא אלמנט בלתי מורכב > 0 כגון 1_0 כאשר _ הוא רצף.
יסודות שפת המתמטיקה 335978
טוב, הנה הדברים שאני לא מבין:
מה זה לדעתך פונקציה? ואל תגיד לי גישור בין התודעה וכו', אני לא מבין את המשפט הזה.
למה אני צריך לעבור מאיבר ב R לאיבר אחר ב R בלי לדלג? מה הכוונה לדלג? למה צריך לעבור? האם אתה מתכוון לומר שאין דרך חישובית לכתוב פונקציה כזו? אם לא האם ב N זה אפשרי?
כתבת שהרצף הוא אלמנט וכו': מהו אלמנט? מהו אלמנט בלתי מורכב? מהו יחס הסדר בין האלמנטים? את כל זה תסביר בבקשה כמו מתמתיקאי, בצורה שבה כותבים מאמרים וספרים מתמטיים רגילים, ולא כמו פילוסוף או סופר, או גורו.
יסודות שפת המתמטיקה 335840
ב. עזוב אותך מהתאמה לרציונליים. יש התאמה בין קבוצת *הטבעיים* לקבוצת *הטבעיים* - הזהות. מכיוון שדורון לא מקבל גם את קיום ההתאמה הזו, לא נותר אלא להסיק שהפסילה שלו היא שרירותית: אני לא רואה שום נימוק שמאפשר להגיד שהעתקת הזהות היא לא התאמה חח"ע ועל, ולא משנה אם היא מוגדרת על קבוצה אינסופית. כנראה שמושג ה"התאמה" שלו (כלומר מושג הפונקציה שלו) שונה מהותית מהמושג שלך.

נראה לי שזו נקודה טובה להתייאש בה מהדיון.
יסודות שפת המתמטיקה 335842
סעיף ב1 עוסק ספציפית במה שדורון מכנה "האלכסון הראשון של קנטור", שהוא לטענתו הוכחה של קנטור שאין התאמה כזאת.
לא יודע למה בכל זאת שאלתי, הרי זה רק מקרה פרטי של המשפט המהפכני מסעיף ב2 שיפיל את עולם המתמטיקה על הקרשים ‏1.

כבר הרבה נקודות טובות ליאוש עברתי ושרדתי, עוד אחת לא תזיק. מזל שהדיון הוא קו בלתי ניתן לפירוק.

1 מצחוק.
יסודות שפת המתמטיקה 335844
''אני לא רואה שום נימוק שמאפשר להגיד שהעתקת הזהות היא לא התאמה חח''ע ועל,''

זהו בדיוק ההבדל בין אוסף סופי ואוסף אינסופי.

לאוסף אינסופי אין העתקת-זהות כי העוקב מונה תמידית את השלמתה של העתקת זהות זו.

זהותם של אלמנטים באוסף אינה קשורה כלל וכלל להעתקת זהות ע''י מיפוי של אוסף לעצמו, אלא היא נובעת מהאקסיומה המגדירה תכונות מסוימות לאלמנטים, וגודל האוסף הנושא תכונות אלה לא מעלה ולא מוריד מתכונות אלה.
יסודות שפת המתמטיקה 335847
תיקון לתגובה קודמת''

לאוסף אינסופי אין העתקת-זהות כי העוקב מונע תמידית את השלמתה של העתקת זהות זו.
יסודות שפת המתמטיקה 335939
הרשה לי להשיא לך עצה. להבא, כשאתה רוצה לעניין מתמטיקאי בעקרונות השיטה שלך, אני ממליץ *להתחיל* מן ההצהרה ש"לאוסף אינסופי אין העתקת זהות".

הטענה הזו מתייחדת משאר טענותיך בכך שאתה והמתמטיקאי מסכימים זה עם זה בנוגע לפירושה של כל מלה בנפרד (למעט המלה "אין"). בנוסף, היא מעבירה בחטף הררים של אינפורמציה נסתרת. המתמטיקאי יבין מיד (אחרי שיבקש ממך לחזור על הטענה, למקרה ששמיעתו אינה כתמול שלשום) שאתה לא מקבל את האקסיומות המקובלות של תורת הקבוצות, ובפרט את אלו שמאפשרות לבנות קבוצה מרעותה; ושאתה קונסטרוקטיביסט קיצוני שאינו מקבל את קיומן של קבוצות אינסופיות (למעט אולי מקרים פרטיים).

יתכן שבשלב הבא הוא יתהה לדעת האם אתה מתיר לקבוצת המספרים הטבעיים להתקיים (תגובה 335742, "the collection of the Natural numbers"), או שאתה שייך לפלג שכופר גם בקיומה של זו (תגובה 335784, "אוסף *כל* המספרים הטבעיים לא קיים, פשוטו כמשמעו"). בין כך ובין כך תוכלו שניכם לחסוך זמן יקר.
יסודות שפת המתמטיקה 335991
נראה לי שהמתמטיקאים שד''ש שלח אליהם את יצירתו חסכו את הזמן הזה ממילא.
יסודות שפת המתמטיקה 336176
נראה לי שהאדם היחיד באתר הזה עם כלים מתאימים לדיון הנוכחי זו אשתך. אני מציע להזעיקה בדחיפות.
יסודות שפת המתמטיקה 337347
"שאתה לא מקבל את האקסיומות המקובלות של תורת הקבוצות, ובפרט את אלו שמאפשרות לבנות קבוצה מרעותה; ושאתה קונסטרוקטיביסט קיצוני שאינו מקבל את קיומן של קבוצות אינסופיות (למעט אולי מקרים פרטיים)."

עוזי אינני קונסטרוקטיביסט קיצוני אלא מבחין בפשטות רבה (הניתמת להבנה ע"י כל החפץ בכך) כי אוסף אינסופי אינו מהווה מערכת איברים שלמה כאשר הוא מושווה לרצף מוחלט, כי העוקב של אוסף אינסופי חורג *תמידית* (כמו צל בין-ערביים)מתחום האוסף.

חריגה תמידית זו מקיימת אוסף אינסופי, ואוסף זה הוא אינסופי מכיוון שהערך המדוייק של הקרדינל שלו אינו קיים.

קנטור וחבריו לא הבינו כי אי-קיומה של העתקת זהות הינה בדיוק התכונה המפרידה קטגורית בין אוסף אינסופי לאוסף סופי, ומתוך אי-הבנה זו הם כפו תכונות של אוסף סופי על אוסף אינסופי.

אני מציע לך לעיין בזהירות רבה בתגובה 332759

תודה.
יסודות שפת המתמטיקה 337371
"העוקב של אוסף אינסופי חורג תמידית מתחום האוסף."

לא, העוקב חורג מכל קבוצה חלקית סופית של האוסף. או ליתר דיוק: בכל קבוצה חלקית סופית של האוסף, קיים איבר שהעוקב שלו אינו איבר בקבוצה.

זו ה"הפרדה הקטגורית" (לפחות הגדרה אפשרית אחת) בין קבוצות סופיות לקבוצות אינסופיות: בקבוצה סופית לא ניתן להגדיר "עוקב" לכל איבר, ובקבוצה אינסופית אפשר.

חבל שאתה לוקח תכונות שמתקיימות עבור קבוצות סופיות, ומניח אותן אוטומטית עבור קבוצות אינסופיות. ככה אתה מגיע לתוצאות שגויות.
יסודות שפת המתמטיקה 337387
כנראה פספסתי את החלק שבו אתם מגדירים מהו "עוקב". האם ההגדרה היא זו: לכל איבר קיים איבר אחר שנקרא ה"עוקב" שלו כך שקיים איבר אחד שאינו עוקב של אף איבר אחר, ואיבר אינו יכול להיות עוקב של שני איברים גם יחד?

כי אם היא לא, קל מאוד לתת קבוצות סופיות עם עוקבים לכולם (קח את Z_3).

בכלל, מה זה "עוקב של אוסף"? הקבוצה של כל העוקבים של כל אברי האוסף?
יסודות שפת המתמטיקה 337401
ההגדרה שלי לעוקב, היא פונקציה כלשהי (שנסמן בטאג) שעבור כל x מקיימת:
x'≠x
x'≥x
עבור יחס מלא כלשהו.

עבור אף קבוצה סופית אין פונקצית עוקב.
עבור כל קבוצה אינסופית קיימת פונקצית עוקב (ע"פ אקסיומת הבחירה).

הביטוי "עוקב של אוסף" הוא ניסוח מתמטי לא מדויק של דורון. באופן מפתיע ההגדרה הסטנדרטית שלך דווקא מתאימה למה שהוא רצה לומר.
יסודות שפת המתמטיקה 337407
רגע, רגע. מה זה "יחס מלא"? הכוונה שלך ליחס סדר לינארי (כלומר, כזה שבו כל שני איברים ניתנים להשוואה?) זה נראה לי טיפה בעייתי, כי אקסיומת הבחירה אמנם תיתן לך פונקצית עוקב אבל על ידי זה שהיא תגדיר יחס סדר (טוב) משל עצמה. קח למשל את הקבוצה N+w (הטבעיים עם איבר אחרון) - מוגדר עליה יחס סדר מלא, אבל אין עליה פונקצית עוקב (מה העוקב של w?) ובשביל שתהיה לך פונקצית עוקב תצטרך לשנות את יחס הסדר.

קטנוני למדי (לא קשה לתקן את ההגדרה כך שתתקיים עבור סדר טוב, ואולי סתם התבלבלתי) אבל בדיון הזה אי אפשר להבין כלום אם ההגדרות לא ברורות.
יסודות שפת המתמטיקה 337408
התכוונתי "סדר מלא".

עוקב לא צריך להיות מוגדר עבור *כל* סדר מלא. הטענה היא שעבור כל קבוצה אינסופית קיים סדר מלא, שעבורו קיים עוקב. למשל עבור N+w קיים סדר כזה (כל מספר גדול מ-w, והיחס בין כל שני מספרים הוא יחס הסדר הרגיל). וכן, עבור סדר טוב תמיד קיימת פונקצית עוקב.
יסודות שפת המתמטיקה 337414
טוב, ברור שתמיד קיים סדר מלא שעבורו יש פונקצית עוקב כי קיים סדר טוב, והוא בפרט מלא. אם מתעלמים מהסדר הקיים על הקבוצה אז N+w היא פשוט N (והדבר היחיד שמבדיל בין קבוצות הוא הקרדינליות שלהן).

הבעיה היא שדורון מדבר על *ה*עוקב, וכאן ההגדרה דווקא משאירה מקום תמרון להרבה עוקבים שונים. ניחא, עכשיו צריך לברר מה הכוונה ב"צל בין-ערביים".

אבל עזוב, כנראה אנחנו אהבלים כמו קנטור וחבריו.
יסודות שפת המתמטיקה 337415
''אמור לי מי חבריך, ואומר לך מי אתה.''
יסודות שפת המתמטיקה 337418
למה "עפ"י אקסיומת הבחירה"?
יסודות שפת המתמטיקה 337421
יכול להיות שאפשר להוכיח את הטענה בלעדיה. צריך לחשוב על זה.

בעצם עכשיו אני כבר לא בטוח שאפשר להוכיח את זה גם עם אקסיומת הבחירה: צריך קודם להוכיח שעבור כל קבוצה קיים סדר מלא כך שלכל איבר יש איבר גדול ממנו.

אם נניח שהוכחנו את הטענה הזאת, אז זה פשוט: עבור כל איבר קיימת קבוצה לא ריקה של כל האיברים הגדולים-ממש ממנו לפי הסדר המלא שלנו. בוחרים איבר כלשהו מהקבוצה (למשל: מסדרים את הקבוצה הזאת ע"פ סדר טוב, ולוקחים את האיבר המינימלי). הפעולה הזאת היא פעולת העוקב.
יסודות שפת המתמטיקה 337424
אבל לא כל סדר טוב הוא סדר מלא? וזה יש לך ממילא.
יסודות שפת המתמטיקה 337427
לא סתם סדר מלא. "סדר מלא כך שלכל איבר יש איבר גדול ממנו". וגדי נתן הוכחה יפה לטענה בתגובה 337425.
יסודות שפת המתמטיקה 337434
כן, עדיין כל מה שנותנת לך כאן אקסיומת הבחירה זה את משפט הסדר הטוב.
יסודות שפת המתמטיקה 337435
משפט הסדר הטוב שקול לאקסיומת הבחירה.
יסודות שפת המתמטיקה 337438
נכון מאוד. לכן לא ברור לי איזה שימוש נוסף יש כאן לאקסיומה הזאת. (ואגב, האם לא נראה לך שזו בחירה חופשית?)
יסודות שפת המתמטיקה 337439
למה צריך להיות לה שימוש נוסף?
יסודות שפת המתמטיקה 337425
כל סדר טוב הוא סדר מלא על פי הגדרה. אקסיומת הבחירה מבטיחה שיש לך סדר טוב לכל קבוצה. אם הקבוצה אינסופית אין בעיה לקבל את הסדר המלא שאתה מחפש: פשוט תוציא מהקבוצה שלך תת קבוצה בת מניה, תסדר בסדר טוב את האיברים שנשארו, ותוסיף "בסוף" הקבוצה את תת הקבוצה בת המניה שלך כשהיא מסודרת בסדר הטוב הבסיסי (כלומר, איזומורפית ל-N). ככה אתה מבטיח שלא יהיה לך איבר אחרון בקבוצה, ולכן לכל איבר יש עוקב.

בלי אקסיומת הבחירה אני לא חושב שאתה יכול להסתדר עם קבוצות שלא ברור איך למצוא להן "ידנית" סדר טוב, כמו R (שאם אני לא טועה, *הוכיחו* שלא ניתן להציג בצורה מפורשת את הסדר הטוב שלה).
יסודות שפת המתמטיקה 337428
אה, צודק.
יסודות שפת המתמטיקה 335852
כרגיל, אני לא מבין את מה שאתה אומר (*איך* העוקב מונע זאת? לא ברור). סלח לי אם לא אמשיך לעקוב אחרייך בנקודה הזו - אני כבר משוכנע שאתה מדבר בשפה שונה לחלוטין, ועל אובייקטים שונים לחלוטין.
יסודות שפת המתמטיקה 335857
בוודאי שתובנותי ועבודתי הנובעת מהן, עוסקות בתפיסה השונה מהותית מתובנותיו של קנטור בקשר למושג האינסוף.

מעולם לא טענתי אחרת (כפי שאני מסביר בבהירות בתגובה 335742) וכל בקשתי ממך, גדי, הייתה שתנסה ולא פעם אחת, לשים את קנטור בצד ולנסות להבין את עבודתי בנושא, אך כנראה שאינך מסוגל או אינך מעוניין לצאת ולא לרגע אחד מ"ד" אמותיך, וכאשר אתה חש כי אתה קרוב לחריגה מ-"ד" אמותיך, אתה מנתק מגע תוך שימוש בתירוץ זה או אחר.

לצערי גדי, זוהי "תגובת רפלקס" אופיינית של רבים מאנשי קהילת המתמטיקאים הטהורים, אשר אינם מוכנים לזוז כמלוא הנימה בכדי לראות מושגים יסודיים באור שונה בתכלית, וסיבותיהם (אשר לעולם לא יפרטו אותן) עימם.
יסודות שפת המתמטיקה 335895
אני לא מדבר איתך על "התובנות של קנטור", אני מדבר על התובנה האינטואיטיבית *שלי* לגבי מושג הפונקציה. אותה תובנה שנובעת ישירות מהתודעה, שעליה אתה מרבה לדבר. אני תופס פונקציה בראש ובראשונה כהתאמה - לכל איבר מקבוצה A (במשמעות האינטואיטיבית ביותר של קבוצה) אני מתאים איבר מקבוצה B. על פי התפיסה האינטואיטיבית שלי, ניתן להתאים לכל איבר את עצמו.

אני לא צריך את קנטור או את צרמלו-פרנקל בשביל זה. העובדה שהם נותנים ביסוס מדוייק לתחושה הזו שלי היא נהדרת, ובגללה אני חושב שיש ערך גדול לעבודותיהם.

הבעיה היא שאתה לא מסביר לי למה התחושה הזו שגויה, וכרגיל טוען שמדובר בצרות מוחין של המתדיין איתך שמסרב לנסות להבין.
יסודות שפת המתמטיקה 335936
"הבעיה היא שאתה לא מסביר לי למה התחושה הזו שגויה, וכרגיל טוען שמדובר בצרות מוחין של המתדיין איתך שמסרב לנסות להבין."

גדי,

האם אתה מבין שפונקציה הינה בדיוק הגישור של התודעה שלך בין רצף לאוסף, כאשר הגישור מגדיר ON THE FLY את איברים שהוא בוחן, וכי לא קיים אוסף איברים מובחנים במנותק מהפונקציה המגדירה אותם?

שוב: אם נבחן, לדוגמא את אוסף המספרים הטבעיים, הריי שמספרים אלה נקבעים עפ"י אקסיומות המגדירות את תכונותיו של מספר טבעי, כאשר גודל האוסף העונה לתכונות אלה, אינו משפיע כהוא זה על התכונות.

במילים אחרות, שאלת גודלו של אוסף אינה תלויה כלל בתכונותיהם של מרכיביו, ולכן יש להבין את מושג האוסף האינסופי באופן שאינו תלוי בתכונות האיברים של אוסף כלשהו.

מתוך אי-תלות זו, ניתן להבחין מייד כי מושג העוקב אינו תלויי כלל באוסף זה או אחר, וכי קיימת הבחנה קטגורית ברורה לחלוטין בין אוסף סופי לאוסף אינסופי, אשר מונעת כל אפשרות של שימוש בתובנות הקשורות לאוסף סופי והכלתו על אוסף אינסופי.

אוליי הפעם תועיל בטובך לעיין בכל הכתוב ב-http://www.createforum.com/phpbb/viewtopic.php?t=45&... שבו מוסבר בבירור מדוע אין לאוסף אינסופי פונקציית זהות עצמית (ודאת להבדיל מאוסף סופי).
יסודות שפת המתמטיקה 335944
"We know that in order to define 0 and 1 we need to define {} as the successor of itself."

כבר השורה הראשונה בקישור שלך מכילה אמירה מאוד לא ברורה (*למה* צריך להגדיר את {} כעוקב של עצמו? מאיפה "אנחנו יודעים" את זה?). אני חסר את היכולת לקרוא את כל מה שכתוב שם, כנראה.

"האם אתה מבין שפונקציה הינה בדיוק הגישור של התודעה שלך בין רצף לאוסף, כאשר הגישור מגדיר ON THE FLY את איברים שהוא בוחן, וכי לא קיים אוסף איברים מובחנים במנותק מהפונקציה המגדירה אותם?"

אני לא מסכים שפונקציה היא גישור בין רצף ואוסף. למשל, פונקצית הזהות מהטבעיים לעצמם (שעליה אני מסוגל לחשוב באופן אינטואיטיבי) נראית לי כמגשרת בין אוסף לאוסף, לא בין "רצף" (במשמעות שאותה הגדרת: איבר אי פריק) ואוסף.
יסודות שפת המתמטיקה 335753
תגובה 199775.
יסודות שפת המתמטיקה 334768
''נראה לי שפעם קראו לזה ''נביא''.''

נהפוכו, אי-וודאות ויתירות הן תכונות מסדר ראשון של המתמטיקה-המונדית, כך שהמערכת המוצעת הינה אנטי-תיזה של נבואה.
יסודות שפת המתמטיקה 334751
המושג המכונן בתיאוריה (לא תורה אלא תיאוריה) הינו מושג הסימטריה, כאשר המושג העיקרי המשמש בחקר הסימטריה הינו "אי-שונות", לדוגמא: הכדור סימטרי יותר מן הקוביה כי הוא ניחן באי-שונות סיבובית (אינו משתנה בעת סיבוב) וקוביה אינה ניחנת באי-שונות זו.

יותר מכך, מבחינה טופולוגית, הכדור הוא הסימטריה המשמשת כמכנה המשותף לטרנספורמציה בין גופים שאינם ניחנים בסימטריה סיבובית, כגון: קוביה, פירמידה, גליל, חרוט, ביצה וכו'.

במילים אחרות, הסימטריה המגולמת בכדור היא פשוטה יותר מהסימטריות הנ"ל, ופשטות זו היא הסיבה להיותה מכנה משותף לסימטריות אחרות.

אינני מסגל לפשטות שום תכונות של "השגחה-אלוהית" וכו', אלא עוסק במושג זה רק ואך ורק ע"י שימוש במושג הסימטריה.

כשם שסימטריה פשוטה עומדת בבסיסם של סימטריות לא-פשוטות, כך עומדת הריקנות-המוחלטת בבסיס האקסטרפולציה, וכך עומדת המלאות-המוחלטת בבסיס האינטרפולציה, כאשר הריקנות-המוחלטת והמלאות-המוחלטת אינן אלא הפכים של סימטריה אחת ויחידה שאין פשוטה ממנה ולכן אי-השונות המגולמת בה, משמשת כמכנה המשותף לכל סימטריה אפשרית.

התודעה שלנו היא תופעה ככל התופעות ואין לה מעמד על של משקיף חיצוני ולכן יש להבין את קיומה במסגרת מודל הפשטות המוחלטת.

ניתן לעשות זאת ע"י בחינת יכולתה של התודעה להיות מודעת לפשטות העומדת בבסיסה, כאשר יכולת זו נמדדת עפ"י מידת ההפנייה העצמית של התודעה לפשטות הנ"ל.

שפת המתמטיקה הינה שפה מכוונת הפשטה, ולכן אך טבעי הוא שתתעורר השאלה: מהי הפשטות המכוננת העומדת בבסיס החוקר (התודעה) והנחקר (מושאי התודעה) כאחד, וכיצד ניתן לתאר בצורה שיטתית את הקשר שבין התודעה למושאיה דרך הפשטות הנ"ל?

המתמטיקה-המונדית היא ניסיון להגדיר שפה המבוססת על התובנות הנ"ל, והמאמר *המעודכן* בעברית המסביר בקצרה מחקר
זה נמצא ב-http://www.geocities.com/complementarytheory/gishoor... .

לדעתי הגיע הזמן לעסוק בקשר שבין התודעה לעולם המופשט והמוחשי באופן שאינו טעון באמונה כזו או אחרת, אלא ע"י חקירת מושג הסימטריה כמושג מכונן בתחום מדעי-הטבע והמדעים המדוייקים.

אני רואה בגישה זו היפרדות מעול המטפיזיקה והאמונות-הדתיות הכובלות את מחקר התודעה וקשריה עם היקום המופשט והמוחשי הנגיש לה והמקיים אותה הלכה למעשה.
יסודות שפת המתמטיקה 334758
ובהמשך לתגובה קודמת, אם בחקר התודעה והמקיים אותה עסקינן, כאשר מחקר זה מבוסס על מושג הסימטריה, אך טבעי הוא לשאול מה עומד בבסיס החשיבה מבחינה קיומית (למעשה) ולא מבחינה רעיונית (להלכה).

הריי ברור לנו כי רעיונות מובחנים מתקיימים במרחב-קיום כלשהו, ואנו גם יודעים כי ניתן למנף רעיון וליישם אותו במרחב הפיזי.

אם כך הם פני הדברים, הריי שאין הפרדה קטגורית בין המרחב המופשט למרחב הפיזי, ואנו יכולים לשאול את עצמנו מהו הגורם המאפשר שינוע בין המרחבים הנ"ל?

שאלה זו שקולה לחיפוש אחר מודל המאפשר מעבר לא-מאולץ בין מרחב למרחב, ובחקירותיי ב-‏25 שנים באחרונות מצאתי כי מודל זה הינו חקירת המרחבים הנ"ל ע"י מושג הסימטריה, כאשר אני חוקר את יכולתו של מושג זה לשמש כבסיס מכונן בין הפכים (ובמקרה זה ההפכים הם רצף ואוסף).

מושג הסימטריה מאפשר פירוק המטען העודף שדבק במשך אלפי שנים במושג התודעה, וחקירה שיטתית של התודעה במושגים של סימטריה, מאפשרת לבחון מחדש את המושגים הפשוטים ביותר המוכרים לתודעה מזה אלפי שנים כמו המספר-הטבעי וכו'.

שילוב בין סימטריה לתודעה הוא העומד, לדוגמא, בבסיס המספרים האורגניים הטבעיים, שתיאור קצר שלהם מופיע ב-http://www.geocities.com/complementarytheory/gishoor... .
יסודות שפת המתמטיקה 334791
קראתי את המאמר שלך, ולא הבנתי. האם אתה מגדיר בעצם את המספרים הטבעיים מחדש? מגדיר כפל וחיבור באופן שונה? מגדיר מחדש את יחס הסדר בין המספרים הממשיים? אם כן למה אתה לא כותב את זה בפירוש, כמו במאמר מתמטי נורמלי.
כלומר, אם אצלך 1+1 לא שווה ל 1*2, אז איך אתה מגדיר כפל וחיבור?
מתי בדיוק x קטן מ y?
במה ההגדרה שלך יותר טובה מההגדרה הרגילה? הרי ברור שכל תוצאה שתגיע אליה (אם למשל תוכיח שיש אינסוף ראשוניים תאומים) ב"מספרים" ה"טבעיים" שלך, זה כמובן לא יהיה רלוונטי למספרים הטבעיים שכולנו מורגלים בהם.
האם ה"מספרים" שלך מתארים איזה מודל יותר "נכון" של עולם הטבע? האם יש איזה ניסוי שיכול להראות את הטבעיות של ה"מספרים" שלך? למשל אם תראה שיש איזה חישוב במכניקת הקוונטים שבעזרת המספרים שלך נהיה ממש פשוט, ולמעשה אפשר לחזות בעזרתם תופעות עתידיות (קצת כמו המספרים המרוכבים), זה יהיה משהו.

ודרך אגב, נהפוך *הוא* ולא נהפוכו. זה ממש חורה לי, מצטער.
יסודות שפת המתמטיקה 334801
"קראתי את המאמר שלך, ולא הבנתי."

קודם כל, תודה שקראת את המאמר.

המאמר שקראת אינו מאמר מתמטי, אלא מאמר המתאר בקצרה שינויים במושגי יסוד במתמטיקה הנובעים מהכלת תודעת החוקר כחלק בלתי נפרד מתהליך החקירה עצמו תוך שימוש במושג הסימטריה כמושג מכונן.

מודל המספרים הטבעיים המבוסס על הגישור שבין רצף לבדידיות, מבוסס על הרחבת מושג הסודר, המתאר את דרגות הסימטריה הקיימות בין רצף לבדידיות בהינתן קרדינל סופי, כאשר המספר הטבעי ה"רגיל" המבוסס על ZF או PEANO , הינו מקרה פרטי של אסימטריה שבה כל איברי הקבוצה מובחנים היטב.

ניתן לתרגם זאת למגוון המצבים הקיימים בין MULTISET (שבה אין הבחנה בין האיברים) ל-SET (שבה יש הבחנה בין האיברים).

כדי להבין יותר לעומק את המתמטיקה המונדית, אנא עיין בקישורים המצורפים למאמר.

"למשל אם תראה שיש איזה חישוב במכניקת הקוונטים שבעזרת המספרים שלך נהיה ממש פשוט, ולמעשה אפשר לחזות בעזרתם תופעות עתידיות (קצת כמו המספרים המרוכבים), זה יהיה משהו."

המספרים האורגניים הטבעיים, מבוססים על הגישור שבין תכונה גלית (רצף) לבין תכונה חלקיקית (בדידיות) ומהווים מעין "מפת מנדלייב" של תבניות הגישור המינימליות האפשריות, בהנתן כמות איברים סופית.

אנא עיין לדוגמא ב-http://www.createforum.com/phpbb/viewtopic.php?
t=48&mforum=geproject

כמו כן- תוכל לקבל מידע מפורט יותר על מושג המספר ב-http://www.createforum.com/phpbb/viewtopic.php?t=8&a...

דוגמא לקשר אפשרי בין תבניות הסימטריה שמצאתי למערכות פיזיקליות ידועות ניתן למצוא במאמרים:

הבנה חדשה של מושג העוקב ניתן לראות ב- http://www.createforum.com/phpbb/viewtopic.php?t=45&...

מגוון של דיונים העוסקים במתמטיקה-מונדית, ניתו למצא ב- http://www.createforum.com/phpbb/viewforum.php?f=13&...

מבט מקיף על עבודתי ניתן לצוא ב- http://www.createforum.com/phpbb/index.php?mforum=ge...

תודה.
יסודות שפת המתמטיקה 334804
תיקון לתגובה קודמת:

קישור העוסק במבנה הפנימי של המספרים-הטבעיים כמייצגי דרגות אנטרופיה, ניתן למצוא ב-http://www.createforum.com/phpbb/viewtopic.php?t=48&...
יסודות שפת המתמטיקה 334883
קראתי (לא יותר מדי בעיון... מצטער) את ONN1, ONN2 ו ONN3. אבל אני מצטער לומר שלא הבנתי אותם יותר מדי.

אם אני מבין נכון, אז לכל מספר יתכנו כמה יצוגים, שאתה לא יכול לדעת מראש כשאתה מקבל אותו. ככה קשה לנסח חוקים ברורים עבור הכפל והחיבור בלי לציין במפורש את הייצוג, והרי זה פוגע באי הוודאות. נשמע די מסובך.

בכל מקרה לא צריך להמציא שפה מתמתטית חדשה כדי לתאר את זה. לדעתי אפשר להגדיר את הכל כך שמתמתיקאים רגילים יבינו אותך, ולא יצטרכו לשבור את הראש מול המילים המפוצצות כמו סימטריה, טופולוגיה, ביולוגיה מולקולרית, וכו' שנראות כאילו הן שם רק כדי להראות שהכותב מכיר אותן. אולי כדאי לנסות את הגישה הזאת.

אולי המצאת\גילית מבנה חדש שמקיים אקסיומות כלשהן, אבל לא ברור מהן ואיזה תוצאות אפשר לקבל מהן שנוגעות למספרים הטבעיים ה"אמיתיים", אם יש כאלו בכלל.
יסודות שפת המתמטיקה 335908
"אם אני מבין נכון, אז לכל מספר יתכנו כמה יצוגים"

לכל קרדינל סופי יש מספר קבוע ומדוייק לחלוטין של רמות סימטריה פנימויות, כאשר המתמטיקה של ה-‏4000 שנה האחרונות משתמשת, רק ואך ורק בסימטריה השבורה לחלוטין, כתבנית-המידע היחידה העומדת בבסיס המספר הטבעי.

אני עומד נדהם מול אי-היכולת של משתתפי דיון זה להבין דבר כל-כך פשוט.
יסודות שפת המתמטיקה 335915
מלבד העובדה, שכתבתי עוד אי אלו משפטים בתגובה שלי ואתה התיחסת רק לאחד מהם, וגם זה לא באופן שממש קשור אליו, אני מצטער שאני עדיין לא מבין.
מהי הסימטריה השבורה לחלוטין?
איך בבסיס של מספר טבעי עומדת תבנית מידע? מה זה בכלל תבנית מידע? באיזה אופן מספרים מעבירים מידע? הרי הם יכולים להעביר מידע רק אם יש מישהו שמבין אותו, למשל 5 יכול לציין חמישה תפוחים או 5 דקות, תלוי בהקשר וכו'. אם זה איכשהו קשור למה שאתה מתכוון כשאתה כותב תבניות מידע, התקדמנו.
כמה רמות סימטריה פנימיות יש ל 3, למשל? באיזה מובן הן רמות סימטריה - תסביר את המילים רמות, וסימטריה בבקשה. (רמות אמור לבטא סדר, וסימטריה - פעולות שונות שאינן משנות את האוביקט).
חוץ מזה, שאלתי אותך מה היתרון של היצוג שלך של מספרים טבעיים, ועוד לא ענית לי גם על זה.
יסודות שפת המתמטיקה 335919
אח של סמיילי,

הריי קראת את http://www.geocities.com/complementarytheory/gishoor...

הסבר נא לי איך אתה יכול לכתוב דברים כמו:

"איך בבסיס של מספר טבעי עומדת תבנית מידע? מה זה בכלל תבנית מידע? באיזה אופן מספרים מעבירים מידע? הרי הם יכולים להעביר מידע רק אם יש מישהו שמבין אותו, למשל 5 יכול לציין חמישה תפוחים או 5 דקות, תלוי בהקשר וכו'."

כאשר ברור כשמש שאני מבסס באופך שאינו משתמע לשתיי-פנים את מושג המספר הטבעי, על הקשר שבין הזכרון לאוסף המחשבות העולות בתודעתנו?

אמור נא לי מה לא מובן בדבריי??
יסודות שפת המתמטיקה 335923
תיקון לתגובה קודמת:

הקישור הוא http://www.geocities.com/complementarytheory/gishoor...
יסודות שפת המתמטיקה 335976
הקישור שנתת לא עובד.

כנראה שזה לא ברור כשמש אם לא הבנתי את זה (לא זוכר שאמרת את זה בכלל במאמר). עכשיו אני חושב שאני מבין, אבל אז עולות שאלות נוספות: איך אתה מגדיר את האוסף הזה? מהי בכלל התודעה? אם אדם הוא אוטיסט או שיש לו איזושהי תסמונת, וכשהוא חושב על מספר גדול מ 3, לא עולות לא שום מחשבות כי הוא לא מכיר כזה מספר, האם במקרה כזה לא קיים המספר 4?

נ.ב. שוב התייחסת רק למשפט אחד מדברי.
  יסודות שפת המתמטיקה • האייל האלמוני
  יסודות שפת המתמטיקה • האייל האלמוני
  יסודות שפת המתמטיקה • אח של סמיילי
  יסודות שפת המתמטיקה • דורון שדמי
  יסודות שפת המתמטיקה • אח של סמיילי
  יסודות שפת המתמטיקה • דורון שדמי
  יסודות שפת המתמטיקה • אח של סמיילי
  יסודות שפת המתמטיקה • דורון שדמי
  יסודות שפת המתמטיקה • אח של סמיילי
  יסודות שפת המתמטיקה • גדי אלכסנדרוביץ'
  יסודות שפת המתמטיקה • דורון שדמי
  יסודות שפת המתמטיקה • דורון שדמי

חזרה לעמוד הראשי

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים