בתשובה ליזהר, 17/07/05 19:00
עוד זווית 317472
סליחה שאני עונה לך פעמיים, אבל חשבתי על עוד דרך להדגים את הבעייתיות בגישה שלך.

במקום גולדבך, חשוב על השערת ה-Twin Primes: יש אינסוף זוגות ראשוניים שההפרש ביניהם 2. נניח שאתה עובד במערכת אקסיומות כלשהי, ומוכיחים לך ש-TP אינה כריעה מהאקסיומות.

אתה מבקש לנסח זאת באופן הבא: "יש משפט אמיתי שהוא לא יכיח", כש"אמיתי" זה "אמיתי על-פי האקסיומות". בגולדבך, יכולת לעשות זאת: יכולת לטעון שאם גולדבך *לא* נכונה, אז יש לעובדה הזו הוכחה מהאקסיומות - מספר ספציפי שאפשר להוכיח לגביו שהוא סותר את גולדבך.

זה נכון, אבל פה עם TP אתה לא יכול לעשות זאת. איזה משני המשפטים הוא אמיתי על-פי האקסיומות? TP או לא-TP? באף אחד משני המקרים אין "דוגמה נגדית" שאתה יכול לוודא את אמיתותה בעזרת האקסיומות שלך.

לכן, יש לך שתי ברירות. או להישאר אגנוסטי, לומר ש-TP אינה נכונה ואינה לא-נכונה, כי אי-אפשר להכריע פורמלית. זו עמדה לגיטימית, אבל הניסוח שלה בתור "יש משפט אמיתי שהוא לא יכיח" הוא עכשיו לא נכון: מיהו המשפט האמיתי, ולמה הוא אמיתי "על פי האקסיומות"?

ברירה אחרת היא להחזיק בדעה (שאני מחזיק בה) ש-TP היא באמת נכונה או באמת לא נכונה במספרים הטבעיים; זה שמערכת אקסיומות מסויימת לא מסוגלת להראות זאת זו חולשה של האקסיומות ותו לא. זה יהיה מטריד מאוד אם לא נוכל למצוא אקסיומה נוספת, סבירה, שתכריע בשאלה הזו, אבל אפילו זו לא סיבה חד-משמעית לקבוע שאין ל-TP ערך-אמת.

גדל, אגב, החזיק בדעה כזו אפילו לגבי תורת-הקבוצות: אם השערת-הרצף אינה כריעה, אז חסרה אקסיומה. במקרה הזה זו טענה הרבה יותר חזקה ו"מסוכנת", ואני בכלל לא בטוח שאני מסכים איתה (וכך גם הרבה מתמטיקאים ולוגיקאים). המספרים הטבעיים עצמם, מסדר ראשון, זה (לתחושתי) עולם אחר - אבל ברור לי שאין משפט מתמטי, גדל או אחר, המראה זאת.
עוד זווית 317487
זה כבר חידוש גדול (אולי תחליף לעניבה אפורה). אם המספרים הטבעיים הם "יצורים טבעיים" ואינם תלויים (באמת) במערכת אקסיומטית, אז לכל משפט (מסדר ראשון) עליהם יש ערך אמת "טבעי"? זה נראה לי מרחיק לכת. למה שהטיעון הזה לא יחול על משפטים מסדר שני?
(הטענה "לכל משפט מסדר ראשון יש ערך אמת" בפני עצמה "חזקה" יותר מכל משפט מסדר שני, גם אם אולי לא באופן פורמלי: היא מדברת על משפטים מסדר ראשון ולא על קבוצות).
עוד זווית 317509
מה זה "משפט מסדר שני"? משפט על משפטים?
עוד זווית 317564
משפט על קבוצות שאותן אפשר להגדיר בעזרת משפטים מסדר ראשון.
עוד זווית 317573
סליחה על הטרחנות, אבל אפשר דוגמא?
עוד זווית 317598
"לכל קבוצה A של מספרים, אם לכל x ו- y ב- A מתקיים ש- x-y שייך ל- A וגם לכל x ב- A ולכל z מתקיים ש- x*z שייך ל- A, אז קיים d השייך ל- A, כך שלכל מספר x, מתקיים ש- x שייך ל- A אם ורק אם קיים מספר c כך ש- x=c*d".
(זה הנוסח הארוך ל"חוג המספרים הוא תחום ראשי").

את רוב הטענות המעניינות במתמטיקה אי-אפשר לנסח בשפה מסדר ראשון, כי היא מאפשרת לדבר רק על האובייקטים עצמם ולא על קבוצות שלהם. ובלי קבוצות אין פונקציות, אין יחסים, והעולם בכלל אפור ומשעמם.
עוד זווית 317600
>את רוב הטענות המעניינות במתמטיקה אי-אפשר לנסח בשפה מסדר ראשון, כי היא מאפשרת לדבר רק על האובייקטים עצמם ולא על קבוצות שלהם. ובלי קבוצות אין פונקציות, אין יחסים, והעולם בכלל אפור ומשעמם.

טוב, זה כבר תלוי בצורה שבה אתה בשמתמש בלוגיקה פורמלית. את כל‏1 הטענות במתמטיקה אפשר לנסח בשפה של תורת הקבוצות (שהיא מסדר ראשון). אתרוב הטענות המענינות על אוביקטים ‏2 אי אפשר לנסח בשפה מסדר ראשון שמתארת את אותם אובייקטים.

1 כמעט.
2 שהם לא קבוצות.
עוד זווית 317604
מרוב קיצור נוצר קצר. התכוונתי להגיד: "את רוב הטענות המעניינות במתמטיקה (של תורת המספרים) אי-אפשר לנסח בשפה מסדר ראשון של תורת המספרים" - אם מותר להגיד רק "לכל מספר" ו"קיים מספר" ואסור "לכל קבוצה של מספרים" ו"קיימת קבוצה של מספרים" ו"קיימת קבוצה של קבוצות של מספרים", אז העולם אפור וגו'.
עוד זווית 317602
תודה.:)
נשמע משכנע. גם החיים משעממים ואפורים בלי קבוצות, פונקציות ויחסים. תמיד אמרתי.
עוד זווית 317549
בוודאי, ולכן זו לא טענה שכדאי לנסות להוכיח; זו סתם דיעה. למה שהטיעון לא יחול על משפטים מסדר שני? כי המושג "קבוצה שרירותית של טבעיים" הוא מעורפל, מסיבות ידועות. למה זה טיעון כזה מרחיק לכת? אתה באמת מניח באופן אינטואיטיבי שטענות כמו TP יכולות להיות תלויות במערכת-האקסיומות שנבחר לעבוד איתה?

שוב, אין לי דרך להגן על התיזה הזו, וגם לא רצון רב - זו סתם תחושתי. אין לה השפעה כלשהי על נכונות או אי-נכונות של טענות אריתמטיות. היא גורמת לי להניח ש-PA, וכן החלק האריתמטי של ZFC, הן נאותות; בכך אני לא חושב שאני יוצא-דופן במיוחד, וברור לי (כמו לכולם) שלא ניתן להוכיח את העובדות הללו במערכות המתאימות.
עוד זווית 317568
(פילוסופית,) אין לי ספק בנאותות של PA (ואפילו ZF). אבל קודם טענת משהו אחר: שכל פסוק מסדר ראשון באקסיומות פאנו הוא או נכון או שאינו נכון - בלי תלות באקסיומות. מצד שני, אנחנו יודעים שיש פסוקים ש(בהנחת העקביות) אי-אפשר להוכיח ב- PA. כלומר שבעיניך המודל הוא "האמת", ומערכת פאנו היא רק מערכת אקסיומות חלקית לאמת. לזה התכוונת?
עוד זווית 317583
רק לוודא שאנחנו מדברים על אותו דבר: לא לגמרי ברור לי מה זה "פסוק מסדר ראשון באקסיומות פאנו". פסוק מסדר ראשון יש בשפה; השפה של האריתמטיקה בנוייה מהסימנים המוכרים, ואקסיומות פאנו הן מערכת אחת מבין הרבה מערכות אחרות הרשומות בשפה הזו.

כן, אני סבור שפסוק מסדר ראשון בשפה של האריתמטיקה הוא נכון-או-לא, ומה אפשר-או-אי-אפשר להראות ב-PA נראה לי כמו עניין צדדי. למשל, (Con(PA הוא פסוק אריתמטי כזה, ואני בטוח שהוא נכון - מה דעתך? אתה סבור שאולי לא?
עוד זווית 317601
כן, התכוונתי ל"פסוק מסדר ראשון בשפה של האריתמטיקה". אני מסכים שהשאלה מה אפשר להראות ב- PA לא מעניינת. ZF היא המערכת הנכונה, ואני מוכן לעבור ל- ZFC בלי למצמץ. אבל יש משפטים אריתמטיים שלא ניתן להכריע ב- ZFC, ובדרך כלל אני לא רואה שום סיבה לצרף אותם (או את שלילתם) למערכת האקסיומות. העקביות של PA היא דוגמא די סינגולרית - בזה אני מאמין מספיק כדי לצרף אותה כאקסיומה... (מט באלף-אפס מסעים?)
עוד זווית 317618
1. יש לך דוגמה למשפט אריתמטי כזה, שאתה אגנוסטי לגביו?

2. (להקדים תרופה) לגבי דידי, המשמעות של משפטים כאלה היא לא שהם גם לא נכונים וגם לא לא-נכונים, אלא שהם אחד מהשניים, ואנו חסרים את הכלים לבדוק.

3. איך אתה מפרש את הטענה "ZF היא המערכת הנכונה"? מדוע, ומה פירוש "נכונה"? ומה מניע אותך לקבל גם את C? לי נראה שיש פה תהליך קבלת-החלטות שההטלה שלו על N מהווה (גם היא) קריטריון לקבלה/דחייה, ע"י שכל תולדה של ההטלה הזו מעומתת עם מה שאנו קוראים לו "האמת לגבי הטבעיים". אם אין אמת כזו, איך מתחילים?
עוד זווית 317627
1. אין לי דוגמאות, אבל א) אני יודע שיש כאלה, ב) זכור לי במעורפל משהו על גירסה של משפט רמזי (צבעוני?) שהיא בלתי כריעה ב- ZFC.

2. אני מוכן להסתכן בתעוקה קלה בחזה של האלמוני, ולהגיד שדעתי די הפוכה. מבחינתי משפטים שאי-אפשר להוכיח או להפריך ב- ZFC הם כנראה חסרי תוכן-אמת, ואני מוכן לשקול אותם על בסיס פרטני. למשל, את העקביות של PA אני מקבל כאקסיומה. משפטים פחות מעניינים - אולי אני בכלל לא רוצה להחליט לגביהם.

3. מה הולך לאיבוד אם יש משפטים (מוזרים מאד, יש להודות) באריתמטיקה שאין להם תוכן אמת? עדיין אפשר "להטיל" משפטים ל- N, ולדאוג שלא נקבל תוצאות שקר. ב- C אני מאמין כי אם יש צדק בעולם, אז מכפלה קרטזית אינסופית צריכה ללכת ולגדול, ולא להעלם פתאום. (אבל בקשר לסעיף 2 - אין מספיק צדק בעולם בשביל להכריע בכל הטענות האריתמטיות).
עוד זווית 317628
1. ודאי שיש כאלה; משפט גדל מבטיח לך זאת. מה שמעניין אותי היא השאלה הבאה: אם תשתכנע, או שיוכיחו, ש- Twin Primes היא לא כריעה ב-ZFC, האם זו תהיה סיבה מספיק טובה עבורך לזנוח את האמונה שהסדרה

3, 5, 7, 11, 13, 17, 19, 29, 31, ...

היא או סופית או אינסופית? "אם יש צדק בעולם", הייתי אומר, היא או זה או זה.

2. אין (לי) (כמובן) כל בעייה עם זה. אבל דווקא העמדה הזו, נראה לי שיותר קשה להגן עליה: ההכרעה הפרטנית נולדת משיקולים שהם, כנראה, קצת מעורפלים.

3. שום דבר לא הולך לאיבוד. טעמי האישי הוא שחד-משמעיות משפטים מסדר ראשון על N היא עובדה מוצדקת אף יותר מאקסיומת הבחירה. מכפלות קרטזיות שלא נעלמות נותנות לי שני תפוזים לבנות מהם שמש, זה צדק זה? מצד שני, כאמור, סדרות פשוטות שלא יודעות להחליט אם הן סופיות או לא, זה כבר נראה לי ממש נבזי.
עוד זווית 317642
נדמה לי שהגישה הזו נוגדת את משפט גדל עצמו. אם יש מספרים טבעיים 'אמיתיים', אז אפשר להתייעץ איתם בכל פסוק אריתמטי. אפשר לערוך רשימה של כל המשפטים הנכונים (מסודרים לפי אורך), ולצרף את כולם לאקסיומות פאנו. המערכת הזו חזקה מספיק (כוללת את אקסיומות פאנו), עקבית (כי היא מדברת על ''העולם האמיתי''), ושלמה (כי אספנו את כל המשפטים). זה משאיר רק את סדק האפקטיביות.
עוד זווית 317850
נכון מאוד. קוראים לזה True Arithmetic, וכפי שציינת זה לא נוגד את משפט גדל - סדק זה סדק. בגרסה הראשונה של המאמר אפילו הזכרתי את התורה הזו כדוגמה לתורה לא אפקטיבית, אבל נבונים ממני יעצו לי ש-Here be dragons.

עוד שאלה פילוסופית: למה היכולת שלנו להכריע בשאלה מסויימת מכתיבה את דעתנו על קיום תשובה חד-משמעית לשאלה? אני אגנוב דוגמה מדיוויד גייל: "לקליאופטרה היה סוג דם A" הוא משפט שלא נוכל לדעת לעולם אם הוא אמת או שקר (אלא אם תתחולל איזו סנסציה), אבל לא נראה שזה משנה את דעתנו שאו שהיה לה סוג דם A, או שלא. היחס שלי למשפטים שאינם כריעים ב-ZFC הוא דומה.
עבור תעבור בו מרכבת זהב 317935
אם כך, למשפט גדל יש מסקנה פילוסופית: אם מניחים שקיים מודל "טבעי" למספרים הטבעיים (וכך לכל פסוק מסדר ראשון בשפה האריתמטית יש ערך אמת טבעי - והוא או אמת או שקר), אז לפי המשפט אין דרך אפקטיבית לגלות את ערך האמת הזה.
זה לא מבטל את ההבדל בין העמדה הזו לבין האלטרנטיבה (יש משפטים בלי ערך אמת), אבל בעיני זה הופך אותו להרבה יותר קטן.

מלבד זה, האם לדעתך יש ערך אמת טבעי לכל פסוק שאפשר לנסח בשפה של תורת הקבוצות, כאשר הוא מתייחס למספרים (וקבוצות של מספרים, וקבוצות של קבוצות של מספרים, ואתה רואה לאן אני חותר)?
עבור תעבור בו מרכבת זהב 317944
"אין דרך אפקטיבית לגלות את ערך האמת הזה": וודאי - זה לרוב מכונה בשם "משפט טרסקי". זו לא (רק) מסקנה פילוסופית, אלא משפט מתמטי מדוייק, בתנאי שאתה מסכים שיש דרך לנסח אותו בכלל - זה, אם אני לא מחמיץ משהו, מחייב אותך להסכים שיש דבר כזה "אמת". ניסוחים מסוג זה הם מקובלים למדי, עד כמה שראיתי; אפשר למצוא כאלה בספרים שהזכרתי (Boolos, Jeffreys, Burgess או Franzen, למשל).

אני לא בטוח שהבנתי את השאלה בסוף - אילו פסוקים בשפה של תורת הקבוצות מתייחסים למספרים? אני מניח שיש ערך אמת טבעי לכל פסוק שיש בו +, *, >, =, 0, ', A ו-E ותו-לא, אם כי אני בוודאי מקבל *הוכחות* המבוססות על אקסיומות מתוחכמות יותר מ-PA. כפי שאמרתי (וזו בוודאי לא המצאה מקורית שלי), המושג "קבוצה שרירותית של מספרים" הוא בפירוש יותר מעורפל.
עוד זווית 317977
נשמע שאתה בהחלט מצדד בגודסטיין, לא?
עוד זווית 317983
אני לא בטוח שהבנתי. השאלה היא האם אני מאמין שסדרות-גודסטין תמיד שואפות ל-‏0? בוודאי. אי-אפשר להראות זאת ב-PA, אבל נראה שיש הסכמה כללית ש*זה* לא אומר הרבה על "האמת".
עוד זווית 317985
התבלבלתי, כמובן. אני מתכוונת לגולדשטיין.:)
עוד זווית 317987
אה. אז שוב לא הבנתי - באיזו אמירה שלה אני מצדד? אם הכוונה לקטע בו הסבירה שמשפט גדל מחזק את הגישה הפלטוניסטית, אז דווקא לא (את הגישה הפלטוניסטית לאריתמטיקה מסדר ראשון אני מקבל, אבל לא *בגלל* גדל).
עוד זווית 317989
חשבתי שזה כן מתקשר לטענתך שמשפט גדל מוכיח שיש משפטים שנכונותם/מופרכותם אינן נובעות מהאקסיומות, לא?
עוד זווית 317991
אבל משפט גדל לא מוכיח את זה, אלא למי שמסכים מראש שיש דבר כזה "נכונותם/מופרכותם".

משפט גדל אומר ש(עבור כל מערכת אקסיומות המקיימת... )יש משפטים אריתמטיים שאי-אפשר להוכיח ואי-אפשר להפריך במערכת.

פרשנות א': יש משפטים שאין להם בכלל ערך-אמת; הם לא נכונים ולא לא-נכונים.

פרשנות ב': כל משפט הוא נכון או לא-נכון, אלא שכל מערכת אקסיומות היא חלשה מכדי להוכיח את כל הנכונים ולהפריך את כל הלא-נכונים.

הויכוח בין שתי הפרשנויות נותר בעינו (כמובן) גם אחרי גדל, ולכן לא ברור לי הטיעון שגדל מקנה משקל יתר לפרשנות ב' (פלטוניזם אריתמטי).

בכל אופן, אם השאלה היא האם אני פלטוניסט-אריתמטי - התשובה היא "כן" (לפחות עד שאורי או עוזי ישכנעו אותי אחרת. אני לא נעול על הגישה הזו).
עוד זווית 317997
בתגובתך ליזהר אתמול אמרת, "האמת לא תלויה באקסיומות, זו כל הנקודה."
ואני התייחסתי לתפיסה *שלך* את משפט גדל.
בכל אופן, כמו שאמרת (כאן ובדיון אחר, דומתני) - אתה "עדייו" פלטוניסט, לפחות בנוגע לטבעיים. כעת, הרגעת אותי בטענה שאלה לא מאכלסים עד התפוצצות איזה מחסן במעלה החמשה, אבל לא אמרת כלל באיזה מובן הם קיימים בעינייך. אתה יכול להגדיר את זה?
עוד זווית 317998
אני חושב שכבר הגדרתי, אבל שוב: אני סבור שכל טענה מסדר ראשון על הטבעיים היא נכונה, או שהיא לא נכונה. זה הכל. האם בעקבות זאת יש לומר שהטבעיים "קיימים"? לא יודע.
עוד זווית 317886
אם אתה אדם ולא מכונת טורינג, סדק האפקטיביות לא צריך להטריד אותך.
עוד זווית 317890
האם אתה יכול להציג בפני קבוצת אקסיומות ו/או כללי היקש, כך שאני אוכל להכריע לגבי כל טענה חשודה האם היא אקסיומה או כלל היקש, והיא אינה ניתנת לחישוב ‏1?

1 כלומר, שפה ב-R.
עוד זווית 317894
כדאי שתשאל אדם, ולא אותנו, מכונות הטורינג.
עוד זווית 317708
"מכפלות קרטזיות שלא נעלמות נותנות לי שני תפוזים לבנות מהם שמש,"
את השירה הזאת אי אפשר להפסיק... מה ההמשך?
עוד זווית 317710
עוד 2-3 אקסיומות ונתחיל לבנות את מכונת הטיורינג המתאימה.
עוד זווית 317712
והפיוט, מה יהיה עליו?
עוד זווית 317823
אלון מתיחס לפרדוקס בנך-טרסקי:
איך לא הבנתי את זה בעצמי? 317828
בכלל לא קישרתי את "מכפלה קרטזית אינסופית נותנת קבוצה לא-ריקה" עם אקסיומת הבחירה.

אבל למה שמש? מכפלה קרטזית שלא נעלמת נותנת שני תפוזים לבנות מהם תפוז.

וכן, זה ניסוח מאוד פיוטי.
איך לא הבנתי את זה בעצמי? 317928
"למה שמש?" - לא יודע אם אתה שואל ברצינות, אבל כן: משפט ב"ט מאפשר לחלק תפוז (או שניים) למספר סופי של חלקים, לסובב ולהזיז, ולבנות שמש.
איך לא הבנתי את זה בעצמי? 317940
בגרסה שאני מכיר, המשמעות היא שניתן לחלק כדור למספר סופי של חלקים, לסובב ולהזיז, וליצור שני כדורים זהים לו. זו גם הטענה שמופיעה בויקיפדיה (בקישור לעיל).
איך לא הבנתי את זה בעצמי? 317945
ובאינדוקציה...
איך לא הבנתי את זה בעצמי? 317947
השמש היא אוסף סופי של תפוזים?
איך לא הבנתי את זה בעצמי? 317949
לא, אבל אפשר לבנות אותה מהם ע"י פירוק לחלקים, סיבובים והזזות; כיוון שיש לה אותו נפח כמו למספיק תפוזים, זה דווקא החלק הפחות מפתיע בסיפור.
איך לא הבנתי את זה בעצמי? 317952
אחח, אם רק האלכימאים היו יודעים את זה...
איך לא הבנתי את זה בעצמי? 317948
זה נשמע הגיוני, אבל לא הייתי בטוח, כי זה לא ממש ברור לי שאת הכדורים ניתן לחבר לכדור גדול פי 2. אבל אם אתה אומר שזה אפשרי, אני מקבל את זה כאקסיומה ‏1.

1 אם את *כל* מה שאתה אומר אני מקבל כאקסיומה, ואתה אכן מכונת טיורינג, מתקבלת מכך תורה אפקטיבית. נשמע נחמד :).
איך לא הבנתי את זה בעצמי? 317954
אל תקבל שום דבר כאקסיומה, בטח לא ממני... ההוכחה של משפט ב"ט היא ממש לא קשה, ולא דורשת שום דבר מעבר לקצת השכלה מתמטית שנראה לי שיש לך. החלק הכי קשה הוא ההוכחה שחבורת הסיבובים במרחב מכילה חבורה חפשית, וזה דווקא החלק שהכי קל לקבל אינטואיטיבית. יש ספר מאוד נחמד של Stan Wagon על המשפט הזה.
איך לא הבנתי את זה בעצמי? 317972
מה זה "חבורה חופשית"?
איך לא הבנתי את זה בעצמי? 317974
(הערך בויקי העברית מזעזע, לתשומת לב אלו שמבינים משהו).
איך לא הבנתי את זה בעצמי? 317979
תודה.:)
איך לא הבנתי את זה בעצמי? 317982
אני אנסה להציל את כבודי האבוד כמרצה-ברוחו שאוהב לתת תשובות עם תוכן.

"חבורה" - אוסף של דברים (לא חשוב מה; לרוב נקראים "איברים") שאפשר לכפול אותם ("כפל" זו מכונה שלוקחת שני איברים ומחזירה איבר); אחד האיברים מתנהג כמו "1" (כלומר, כשכופלים בו X כלשהו, יוצא X); ולכל אחד מהאיברים יש הופכי (כלומר לכל X יש איזשהו Y כך ש-XY הוא ה-"1" הזה).

חבורה חופשית היא חבורה שבנויה באופן הבא (בהגבלה קלה של הכלליות): לוקחים כמה אותיות, נניח שתיים (A ו-B); מוסיפים שתי אותיות שתהווינה הופכיות לשתי אלה (נניח a ו-b); ומגדירים חבורה שהאיברים שלה הן "מילים" באותיות האלה, כשאסור לאות להופיע ליד ההופכית שלה. ABabAA זה בסדר, BaA זה לא. הכפל מוגדר ע"י זה שרושמים את שתי המילים בזו אחר זו, ואז מצמצמים אם אפשר לצמצם: בכל פעם שרואים Aa או aA או Bb או bB, מעיפים את צמד האותיות הללו והמילה מתקצרת. למשל:

ABa * AbA = ABaAbA = ABbA = AA

(שתי המילים באמצע החישוב הזה הן רק תוצאות ביניים; הן לא מקיימות את האיסור על הופכיות צמודות כי עוד לא גמרנו לצמצם). אפשר לראות שמתקבלת חבורה: "1" זו המילה הריקה שאין בה בכלל אותיות, וההופכית של מילה מתקבלת ע"י זה שהופכים את סדר האותיות ומחליפים כל אות בהופכית שלה.

החבורה הזו נקראת "חופשית" כי האיברים שלה לא מקיימים שום "יחס" חוץ ממה שמתחייב מחוקי החבורה. 0=2+3-2-3, למשל, זה יחס לא טריוויאלי בחבורה של המספרים השלמים עם חיבור.
איך לא הבנתי את זה בעצמי? 317988
תודה. הבנתי כבר את הרוב מהוויקיפדיה, רק לא מדוע החבורה נקראת ''חופשית''.
איך לא הבנתי את זה בעצמי? 318021
היא חופשית מיחסים. בחבורות שאינן חופשיות יש יחסים שאומרים משהו על היוצרים של החבורה (למשל, ש- ababab=1).
איך לא הבנתי את זה בעצמי? 318039
כן, תודה. התכוונתי שזה החלק שאלון השלים לי אחרי הוויקיפדיה...
איך לא הבנתי את זה בעצמי? 317993
אולי כדאי לציין שה''מכונה'' הזאת אינה בהכרח מכונת טיורינג.
איך לא הבנתי את זה בעצמי? 317995
חשבתי (באיחור) ש''מכונה'' היא אכן ביטוי לא מוצלח כאן.
איך לא הבנתי את זה בעצמי? 317980
מרצה שלי (אי שם בשנות השמונים) סיפר פעם שבתואר ראשון הוא חזר הביתה וניסה להסביר לאמו את עניין התפוזים והשמש. אמא שלו אמרה רק: אם אלו השטויות שמלמדים אתכם באוניברסיטה, אולי עדיף שתמצא עבודה.
איך לא הבנתי את זה בעצמי? 317986
נחמד :-) יש כמה דברים כאלה, שאפשר לספר לאמא ולקבל המלצה על שינוי כיוון.

הגדרה: "עקום" במרחב הוא תמונה רציפה של הקטע [0,1] (כשמסבירים את זה לאמא, עושים כזו מין תנועה באוויר עם האצבע - מתחילים *פה*, עושים ווש-ווש-ווש, ומסיימים *פה*)

משפט: קובייה היא עקום (וגם כדור, צלחת, אקליפטוס ומסננת).

שם למשפט (אורי, זה בשבילך): Hahn-Mazurkiewicz.
איך לא הבנתי את זה בעצמי? 317994
"Hahn-Mazurkiewicz" נשמע בערך כמו "מחול החרבות".
איך לא הבנתי את זה בעצמי? 318022
זה לא עקום פאנו? (בלי שום קשר לאקסיומות פאנו פרט לאב הרוחני, עקום פאנו הוא מסילה רציפה שמכסה את ריבוע היחידה).
איך לא הבנתי את זה בעצמי? 318026
כן, חוץ מזה שכאן הוא מכסה קוביה. משפט ה"מ הוא הכללה של הבנייה הקונקרטית של פאנו, והוא נותן את התנאי המדוייק ב-R^n לקבוצה להיות עקום (משהו כמו קומפקטית וקשירה מסילתית, לא זוכר בדיוק; הקטע הוא שכל קבוצה העונה על שתיים-שלוש תכונות פשוטות שברור שיש לעקומים היא אכן עקום, ו"מימד" הוא לא אחת מהתכונות הללו).
איך לא הבנתי את זה בעצמי? 318041
"עקום" הוא *כל* תמונה רציפה של הקטע [0,1]?
איך לא הבנתי את זה בעצמי? 318057
כן (למה השאלה?)
איך לא הבנתי את זה בעצמי? 318059
פשוט לא הבנתי. וזה גם לא הוגן. חלק מהתמונות הן בטח ישרות להפליא...
איך לא הבנתי את זה בעצמי? 318070
הגדרות מתמטיות הן נורא לא הוגנות. ''עקום'' יכול להיות ישר, ''ישר'' יכול להיות עגול, ''עיגול'' יכול להיות כדור ו''כדור'' יכול להיות פירמידה. ''קבוצה פתוחה'' יכולה להיות גם ''קבוצה סגורה'', ''קומפקטי'' יכול להיות בגודל של גלקסיה, ''טור'' כותבים בשורה ול''גבעול'' אין אף-פעם שיבולת, גם כשהוא ב''אלומה''.

כאמור, עדיף לחפש מקצוע אמיתי.
איך לא הבנתי את זה בעצמי? 318074
אתם ממש לא רציניים.
איך לא הבנתי את זה בעצמי? 318088
גבעולים ואלומות? מאיפה זה?
איך לא הבנתי את זה בעצמי? 318091
גאומטריה דיפרנציאלית אאל''ט.
איך לא הבנתי את זה בעצמי? 318092
"Sheaf" and "Stalk" (scheme theory, algebraic geometry, some algebraic topology.)
איך לא הבנתי את זה בעצמי? 318095
ומה זה fiber bundle? אגד סיבים?
איך לא הבנתי את זה בעצמי? 318106
כן.
איך לא הבנתי את זה בעצמי? 318108
אם כך bundle bundle זה אגד חבילות?
:-) 318110
איך לא הבנתי את זה בעצמי? 318107
מה זה, "והיה הישר לעקום"? לא הגזמתם? אנשים נורמליים משתמשים לפעמים במכבסת מלים. אבל אתם הולכים על לכלוך? תתביישו!
איך לא הבנתי את זה בעצמי? 317992
למעשה המשפט היה ידוע לפני כמה אלפי שנים, ואף נמצאו לו שימושים מעשיים:

"אמר להם ישוע: אין הם צריכים ללכת, תנו להם אתם לאכול.
השיבו לו: אין לנו פה אלא חמש כיכרות לחם ושני דגים.
אמר: הביאו אותם אלי הנה.
הוא ציוה את בעם לשבת על הדשא, לקח את חמש ככרות הלחם ואת שני הדגים, נשא עיניו השמימה וברך. לאחר מכן בצע את הלחם ונתן לתלמידים והתלמידים נתנו לעם. הכל אכלו ושבעו, וממה שנותר אספו שנים עשר סלים מלאים. מספר האוכלים היה כחמשת אלפים איש מלבד הנשים והטף"

(הברית החדשה, מתיוס י"ד 13-21)

מסקנה: מזל שלא היו להם גם שני תפוזים. כך נמנע אסון גדול.
איך לא הבנתי את זה בעצמי? 317996
צב"ר.

יש, אגב, אנשים הסבורים שכל האמיתות המתמטיות מצויות בכתבי-הקודש - היהודים, הנוצריים, המוסלמיים או (תמיד זה *או*) ההינדיים. לעומתם יש כאלה הסבורים שמשפט-גדל מוכיח שהם טועים.
עוד זווית 317840
עכשיו כבר לא ברור מה יותר מקסים, הפיוט או הפרדוקס. תודה.
עוד זווית 318176
תגובה 164394 ומדובר על אי תלות ב-PA בלבד.
מצד שני ברור שניתן לבנות פסוק גדל כך שכל הכמתים כבולים לאומגה (מהצורה קיים x ששייך לאומגה כך ש-...)
עוד זווית 318183
אתה מכיר טענות אריתמטיות שאינן כריעות ב- ZFC, פרט לעקביות של PA?
עוד זווית 318184
מה גורם לך לחשוב שעקביות PA אינה יכיחה ב-ZFC?
עוד זווית 318221
נניח שמלמלתי משהו על חמש ורבע וכו'. לכם המתמטיקאים יש הרגל מעצבן להצביע על פגם אחד בתגובה ולהסתפק בזה, במקום לדבר בפסקאות שלמות. (במקרה הזה: העקביות של PA יכיחה ב- ZFC, מכיוון שיש לה מודל, שבו 0 הוא הקבוצה הריקה והמספר n הוא הקבוצה המכילה את (הקבוצות של) המספרים מאפס עד n-1. זה אומר ש*אם ZFC עקבית*, אז PA גם עקבית).

אנא כתוב פסקה שלמה על טענות אריתמטיות לא כריעות.
עוד זווית 318222
מה עניין "חמש ורבע"?
עוד זווית 318227
(תגובה 318164).
עוד זווית 318280
אני נדהמת כל פעם מחדש מהמהירות שבה נוצרים קיצורי רך כאלה באייל. מרשים ביותר.
עוד זווית 318224
אני חושב שאלוף העולם בימינו בייצור טענות אריתמטיות שאינן כריעות ב-ZFC הוא הארווי פרידמן. אני אנסה לדוג מאמרים שלו (או עליו) שקראתי פעם, ומכילים תוצאות מסוג זה. לא מזמן קראתי (וגם את זה אנסה לדוג) שהוא, אישית, דווקא מצדד בעמדתי - הטענות הללו הן נכונות-או-לא, ורק האקסיומות האומללות שלנו אינן מספיקות כדי להראות זאת. אם אני זוכר טוב, הדוגמאות שלו הופכות ליכיחות אם מוסיפים איזה קרדינל גדול יחסית צנוע, והוא משתמש בזה כדי לגבש דעה לגבי הנכונות של הטענה "באמת".

עוד דבר שנדמה לי שקראתי פעם הוא שפרידמן הוא גם (או רק?) פרופסור למוזיקה.
עוד זווית 318276
רבע לחמש ולא חמש ורבע.
עוד זווית 318277
טוב, התגובה הקודמת נועדה לאושש את טענתך. יותר ברצינות, לכבוד הוא לי להיקרא מתמטיקאי ע''י בכיר המתמטיקאים באתר (נדמה לי, מי יודע מי באמת מסתתר מאחורי השכ''ג). עוד יותר ברצינות, היום בערב.
עוד זווית 318482
אוקי,
העקביות של PA יכיחה ב-ZFC (בלי להניח עקביות ZFC) משום שניתן (בהנחת ZFC) לבנות מודל ל-PA (דהיינו N או אומגה עם הפעולות הרגילות). בנוסף, מאחר שתחת ZFC אנו מוכיחים את כל שאר המתמטיקה, פחות או יותר, הרי ש-ZFC גם מוכיחה את משפט ה*שלמות* של גדל, כלומר קיום מודל מוכיח עקביות התורה. בדיוק כמו שלא צריך להניח עקביות ZFC כדאי להוכיח עקביות של תורת החבורות, כך גם עבור עקביות PA.

לגבי טענות אריתמטיות אי כריעות ב-ZFC: אני לא מכיר טענה "טבעית" כזו‏1 אבל אם מסתכל על הוכחת משפט גדל נראה שאת כל הקידוד שהוא עושה, אפשר לבצע בתוך אומגה. הוא מקודד סמלים ע"י טבעיים ולאחר מכן גם פסוקים והוכחות. הנוסחה שאומרת "יש ל-X הוכחה" היא בעצם פסוק אריתמטיולבסוף גם פסוק גדל המתקבל הוא כזה.
זו היתה פסקה שלמה על טענות אריתמטיות לא כריעות. זו גם הסיבה שאני לא פלטוניסט-אריתמטי.

1 למרות שבטח יש.
עוד זווית 318486
אתה לא מאמין שלנוסחה (Con(ZFC יש ערך-אמת? (אני יודע שאי-אפשר להוכיח אותה ב-ZFC, אבל...)
בעד הפלטוניזם 319534
החלטתי להציק עוד קצת לך (ולעוזי). נתחיל ממשפטים-דמויי-גולדבאך, כאלה שאומרים "כל מספר טבעי מקיים תכונה מסויימת (שאפשר לבדוק בזמן סופי)". אם משפט כזה הוא לא נכון, אז יש לו דוגמה נגדית קונקרטית, ולכן אם הוא לא כריע במערכת כלשהי T, אז הוא נכון במספרים הטבעיים (ה"רגילים"). את זה גם אתה וגם עוזי מקבלים‏1 - כלומר אתם לא רואים באי-כריעות הזו עדות לאיזו בעייה אונטולוגית, אלא סתם לחולשה של המערכת T: מה לעשות, היא לא מספיקה כדי להוכיח את המשפט, למרות שהוא *באמת* נכון.

אם כך, גם אתה מסכים שאי-כריעות של משפטים *מסוג זה* איננה סיבה מספקת להיות לא פלטוניסט-אריתמטי, ועל רקע זה ההצהרה האחרונה שלך מוזרה בעיני: הלא משפט גדל מייצר אי-כריעות מסוג כזה בדיוק ("כל מספר טבעי איננו (מספר גדל של) הוכחה ב-T לכך ש-T עקבית", למשל).

מובן שייתכנו גם משפטים לא-כריעים שאינם כאלה (כמו TP), ואז באמת לא ברור איזו משתי האפשרויות היא נכונה במספרים הטבעיים. משונה בעיני שאתם מקבלים בקלות את ההנחה שאי-כריעות במקרה הראשון רק חושפת חולשה של מערכות פורמליות, ואילו במקרה השני אצים להניח שיש ריבוי עולמות אונטולוגיים. אם כבר למדנו (מהמקרה הראשון) שכל מערכת פורמלית קצרה ידה מלהוכיח כל משפט אמיתי, מדוע פתאום עכשיו (במקרה השני) המוגבלות הזו מתורגמת לאי-בהירות אמיתית לגבי ערך-האמת של טענות אריתמטיות?

1 ולעדות: תגובה 164381, תגובה 165943.
בעד הפלטוניזם 319748
למה להגביל למספרים הטבעיים? אפשר לחזק את הטענה עוד יותר: נקבע תורה אריתמטית אפקטיבית T (למשל: ZFC). בהנתן משפט מהצורה "לכל x (טענה שאפשר לבדוק - לשני הכיוונים - בזמן סופי)", אם הוא אינו כריע, אז הוא מוכרח להיות אמיתי בכל מודל בן-מניה של T.

(אחרת היתה דוגמא נגדית, ולזה יש הוכחה סופית. זו הגרסה הלוגית של "אם יש ספק אין ספק").

רק כדי ליישר קו: פסוק גדל של התורה T הוא מהצורה שהזכרתי, מכיוון שכל מספר המועמד להיות מספר גדל של הוכחה, אפשר לבדוק בזמן סופי. הפסוק אומר "אין ב- T הוכחה לעקביות של T". מה הנימוק הקודם אומר על ערך האמת שלו?
בעד הפלטוניזם 319824
לא כל כך הבנתי את הפסקה הראשונה, אבל אם הבנתי אותה, אז נראה שאני מסכים. ברור לי שה"נימוק" לא אומר שום דבר על יכיחות בתורה, הוא רק מאפשר להבחין (עבור טענות דמויות-גולדבאך, מה שמכנים פאי-‏1-0) בין האפשרות הסטנדרטית לאפשרות הלא-סטנדרטית לפרש את הטענה.

לא הבאתי את זה כמין סופר-נימוק מדוע אפשר מטא-לראות ש-ZFC עקבית. ניסיתי לומר, או לשאול: מדוע אתם מצמדים את המושג "אמת" ליכיחות ונמנעים מלומר שיש אחת כזו אבסולוטית, כאשר אנו רואים במקרים הקלים שיכיחות ב-ZFC איננה לוכדת את האמת?

דיברנו קודם על טענות אריתמטיות שאינן יכיחות ב-ZFC. אני לא בטוח שציינתי את זה אבל מטייסביץ' (מטיישביץ'? מה שאורי קורא גזונדהייט) נותן לנו אחת פשוטה: יש משוואה דיופנטית שאי-אפשר להוכיח ב-ZFC שאין לה פתרון. ברור שבאמת אין לה פתרון, כאן אין כל ויכוח. במקרה הזה, אם כך, אנו לא מפסיקים להאמין בחד-משמעיותם של הטבעיים, אלא מסיקים בצער ש-ZFC פגומה. מדוע אם כן יש להרחיק לכת ולומר שבמקרים אחרים (לא דמויי-גולדבאך), אם ZFC קצרה ידה אז זה אומר משהו מוזר על חד-משמעיות של טענות? לי נראה יותר טבעי להמשיך את אותו הקו: יש טענות אריתמטיות נכונות, יש לא נכונות, ו-ZFC (כמו כל תורה אפקטיבית אחרת) לא תמיד מאפשרת לנו לזהות מיהי מה. עצוב, אבל אז מה? מי תקע לידינו של-ZFC כל האמת?
בעד הפלטוניזם 320008
מה הקשר בין המשוואות האלו של מטיישביץ' לבין הפתרון שלו לבעיה העשירית של הילברט? (יש הבדל בין "אין אלגוריתם שמכריע האם למשוואה יש פתרון", לבין "משוואה שאי-אפשר להוכיח ב- ZFC שאין לה פתרון").

נראה איפה אנחנו עומדים. יש טענות 'אריתמטיות' שאפשר לנסח ב- ZFC, והן בלתי כריעות שם. דוגמא: העקביות של ZFC. למרות אי-הכריעות, אנחנו מאמינים שהטענות האלה נכונות (באיזה מובן בדיוק, אגב?)

אתה מציע שלכל טענה מסדר ראשון על מספרים - יש ערך אמת "אמיתי"; אם ZFC מצליחה להוכיח או לסתור את הטענה, היא נותנת את הערך הנכון. אבל גם אם לא, זה פשוט מראה על חולשה של ZFC. דוגמא: "ZFC עקבית" היא נוסחא שיש לה ערך אמת (במובן האמוני), ו- ZFC חלשה מכדי להכריע לגביה.

אני מסכים ש*יש* טענות לא כריעות עם ערך אמת; אבל למה להסיק מזה ש*לכל* הטענות מטיפוס מסויים מוכרח להיות ערך אמת? חוץ מזה, על איזה טיפוס בדיוק אנחנו מדברים? כל טענה על מספרים? האם אתה מוכן לקבל שיש טענות (מסדר ראשון - כמובן, אבל האבחנה הזו חסרת משמעות) ללא ערך אמת?
אם יש מודל 'טבעי', מה מפריע לו לכסות גם טענות על קבוצות של מספרים וקבוצות של קבוצות ופונקציות מקבוצות של קבוצות לקבוצות של קבוצות? מה ערך האמת של השערת הרצף?
בעד הפלטוניזם 320028
על אלה טענות אתה מסכים ש*יש* להן ערך אמת?
ואם ללכת לקבוצות של מספרים וכיו"ב - מדוע לא ללכת למספרים שלמים/רציונליים/ממשיים והלאה?
בעד הפלטוניזם 320042
אפשר לסווג את הטענות לארבעה סוגים.
א. אלו שאפשר להוכיח או להפריך במסגרת המערכת האקסיומטית שבחרנו (סטיקר: "אני בוחר ב- ZFC! מאה אלף מתמטיקאים לא טועים")
ב. אלו שמבחינה פורמלית הן בלתי כריעות (שזה בדיוק אומר שהן לא שייכות לסוג הראשון), אבל מסיבה פסיכולוגית כלשהי אנחנו מעדיפים להמציא להן ערך אמת, ואולי אפילו להוסיף אותן למערכת האקסיומות.
ג. בסוג השלישי אפשר לאסוף טענות לא כריעות שאנחנו לא מדביקים להן ערך אמת, והן נשארות בלתי כריעות גם במערכת האקסיומטית (זה עניין פורמלי), וגם 'מבחינה אונטולוגית' (שזה פסיכולוגיה, כאמור; לא באמת חשוב).
ד. הסוג האחרון - "טענות" שאי אפשר בכלל לנסח בשפה של ZFC ("חצילים הם לא טעימים"), ועבורן אין משמעות למושג 'ערך אמת'.

אגב, התגלית המרשימה של גדל (שאולי הלכה לאיבוד בסבך הדיון) היא שטענות כמו "ZFC היא מערכת אקסיומות עקבית" שייכות לאחד משלושת הסוגים הראשונים, ולא לסוג הרביעי. *אפשר* לנסח את ה"מטא-טענה" על עקביות של מערכת 'אריתמטית' (אפקטיבית) בתוך המערכת. המשפט השני של גדל מספר לנו ש(אם המערכת עקבית), אז הטענה הזו אינה שייכת לסוג הראשון - היא לא כריעה בתוך המערכת.

מבחינתי יש ערך אמת לטענות משני הסוגים הראשונים. זו התחמקות, כי הסוג השני לא מוגדר (לא פרשתי בפניכם את הפסיכולוגיה הפרטית שלי). בכל אופן אני מעדיף גישה אגנוסטית בעניין הזה: טענה שרוצה ערך אמת צריכה להתאמץ לשכנע שהיא באמת זקוקה לו.

הדוגמא היחידה שעולה בדעתי לטענות מהסוג השני: העקביות של ZFC. אני מאמין ש- ZFC מערכת עקבית, למרות שכאמור זו טענה ("על מספרים טבעיים") שאינה כריעה במערכת. למרבה התסכול, זה לא יעזור לזרוק לתוך המערכת את האקסיומה שאומרת "ZFC כריעה", ולקרוא לה ZFC+, בגלל שאז משפט גדל יאמר שהטענה "ZFC+ כריעה" אינה כריעה במסגרת ZFC+, ונצטרך לזרוק פנימה עוד ועוד אקסיומות.

אין בעצם הבדל בין מספרים שלמים או רציונליים לבין מספרים טבעיים. על מספרים ממשיים אפשר לחשוב כאילו הם קבוצות (מאד מיוחדות) של מספרים רציונליים. אפשר להפנות לאלון את השאלה הזו - האם הגישה הפלטונית מחייבת ערך אמת מוגדר היטב גם לטענות על מספרים ממשיים? אם לא, מה בתהליך הבניה שלהם הוא לא 'פלטוני'?

----

(שאלה טכנית ללוגיקאים: אפשר להגדיר ברקורסיה את המערכת {ZFC+^{n+1 בתור ZFC+^n יחד עם האקסיומה "ZFC+^n כריעה", כאשר ZFC+^0=ZFC. נסמן ב- ZFC* את איחוד המערכות הקודמות. האם היא עדיין אפקטיבית?)
בעד הפלטוניזם 320046
לשאלה אלי: אני מסיר מעצמי אחריות לגישה הפלטונית באופן כללי... אין לי מושג. הגישה הפרטית שלי מניחה ערך-אמת לטענות מסדר ראשון על ממשיים (מה שאומר שאני מייחס ערך-אמת גם לטענות על קבוצות של טבעיים), אבל לא לטענות על קבוצות של ממשיים (כמו גם על קבוצות של קבוצות של טבעיים). לא חשבתי על זה הרבה, אבל כך נראה לי. אגב, "תהליך הבנייה" של ממשיים הוא ודאי לא 'פלטוני' במובן הבסיסי: הוא מחייב שימוש במושג הלא-קונסטרוקטיבי "סדרה אינסופית שרירותית", או "חתך-דדקינד שרירותי".

__

אני לא לוגיקאי, אבל אני חושב שאני יכול לענות: כן, ודאי. אתה עדיין יכול לזהות אקסיומה, וכללי ההיסק שלך לא השתנו. למעשה, אפשר להמשיך את הבנייה שלך באינדוקציה טרנספיניטית הלאה (באופן ברור), ויש תוצאות על מה קורה שם. יש לי ספר אחר של טורקל פרנזן, "Inexhaustability", שמדבר בדיוק על הנושא הזה בפרקים האחרונים שלו - שטרם יצא לי להתעמק בהם. מומלץ, בכל אופן, עם אזהרה: הוא פלטוניסט בערך כמוני.
בעד הפלטוניזם 320054
לאור ההערה שלך על ההבדל בין "תת-קבוצות מסויימות" ל"תת-קבוצות שאפשר לבנות", אני ממליץ לך לבחור את התשובה הבאה: אתה מאמין בקיום מודל לממשיים שאפשר לבנות (למשל בהצגה העשרונית) אבל לא בהכרח בקיום מודל שמכיל את כל הממשיים.

____

(בעניין ZFC*: בהתחלה היה נדמה לי שפסוק גדל של ZFC* מיוחד במשהו, אבל עד שהגעתי לסוף כתיבת השאלה הבנתי את הבניה הטרנספיניטית. הבעיה היא שזה כל-כך מייגע להכריח את הסימנים המתמטיים להשאר במקום בזמן שממשיכים לכתוב, עד שהיה לי חבל למחוק את השאלה רק בגלל הסיבה הפרוזאית שאני יודע את התשובה).
בעד הפלטוניזם 320060
לא, דווקא אני נוטה להאמין בקלות ב"כל הממשיים". אלה הקונסטרוקטיביליים נראים לי משעממים מדי. לא ציינתי את ההערה על ההבדל בין קבוצות שאפשר לבנות לשאינן-כאלה כדי לומר שאני מאמין רק בראשונות, אלא רק כדי לענות על שאלתך: איך זה שיש מודל "טבעי" לטבעיים שאינו מכריע בשאלות מסדר שני, כמו השערת הרצף. טעמי האישי הוא שהרבה יותר נוח, סביר ומעניין לדבר על מספרים ממשיים שרירותיים וקבוצות שרירותיות של טבעיים - אלא שאז גם אני נאלץ (כנראה) לוותר על האוטופיה הפלטוניסטית שלי; חבל, אבל לא סוף העולם.
בעד הפלטוניזם 320048
1. איפה אתה מלמד, איזה קורסים, והאם אפשר לשמוע אותך כשומעת חופשית?
2. האם "מערכת כריעה" היא "מערכת עקבית"?
3. אני שמחה לשמוע שאתה מבדיל באופן ברור בין הרציונלים לאי-רציונלים.
4. מה מסמן ^ ואיפה הוא מופיע על לוח המקשים? (כאן העתקתי אותו מתגובתך).
בעד הפלטוניזם 320055
1. תודה (?). אני מלמד בבר-אילן, והתשובה לשאלה "אילו קורסים" היא - לשמחתי - שזה תלוי באיזו שנה. בשנה הבאה, למשל, אני מלמד קורס בתורת החוגים וקורס בתורת המספרים. לאוניברסיטה יש כללים בעניין שמיעה חופשית. השאר - ב email.

2. אין כזה דבר, "מערכת כריעה", אבל המושגים די קשורים.
"מערכת עקבית" היא מערכת שלא ניתן להוכיח בה בו זמנית משפט ושלילתו. הגדרות שקולות: מערכת שלא ניתן להוכיח בה משפט מהצורה "f וגם לא f"; וגם: מערכת שיש משפטים שלא ניתן להוכיח בה.
כשקובעים את המערכת, אפשר לדון בכריעות של *טענה* (מהסוג של "קיים מספר ראשוני גדול מ- 7"). אם אפשר להוכיח במסגרת המערכת (=לתת הוכחה פורמלית) את הטענה או את שלילתה, אז היא כריעה. אם אי אפשר לעשות את שני הדברים, אז הטענה לא כריעה.
העובדה שבמערכת T קיימת הוכחה לטענה f, שקולה לכך שהמערכת הופכת להיות לא עקבית אם זורקים פנימה את הטענה "לא f". מכאן שאם הטענה f אינה כריעה, אז אפשר לזרוק אותה למערכת ולקבל מערכת עקבית, ואפשר לזרוק את השלילה שלה פנימה וגם אז מתקבלת מערכת עקבית.

3. מבדיל זה לא אותו דבר כמו מעדיף.

4. את הסימן ^ תוכלי למצוא בדרך-כלל מעל לספרה 6 (בדיוק כמו ש- ! נמצא מעל לספרה 1). במעבד התמלילים LaTeX ("החטא ועונשו הוא סיפור על מישהו שרצח והתחרט"), הסימן ^ משמש להעלאת טקסט לשכבה העליונה של השורה; למשל x^2 אמור להראות כמו x בריבוע.
בעד הפלטוניזם 320094
1. חן חן. אשקול את תורת החוגים.
2. נו, אין זה חדש שהחוכמה איננה מסימניי.
3. אני מבדילה בין המושגים.:)
4. החטא ועונשו בהחלט הסביר את העניין.:)
בעד הפלטוניזם 320170
מה הקטע עם "החטא ועונשו" היה אמור להביע?
בעד הפלטוניזם 320174
לקרוא ל-LaTeX "מעבד תמלילים" זה בערך כמו לקרוא לחטא ועונשו "סיפור על מישהו שרצח והתחרט".
  תשובה טכנית • אורי גוראל-גורביץ'
  תשובה טכנית • עוזי ו.
  תשובה טכנית • אורי גוראל-גורביץ'
  תשובה טכנית • אלון עמית
  תשובה טכנית • אורי גוראל-גורביץ'
  תשובה טכנית • אלון עמית
  תשובה טכנית • אורי גוראל-גורביץ'
  תשובה טכנית • אלון עמית
  עוכר שמחות שכמותך • אורי גוראל-גורביץ'
  עוכר שמחות שכמותך • אורי גוראל-גורביץ'
  עוכר שמחות שכמותך • אלון עמית
  עוכר שמחות שכמותך • אורי גוראל-גורביץ'
  עוכר שמחות שכמותך • אלון עמית
  עוכר שמחות שכמותך • האייל האלמוני
  עוכר שמחות שכמותך • אורי גוראל-גורביץ'
  עוכר שמחות שכמותך • האייל האלמוני
  עוכר שמחות שכמותך • אלון עמית
  עוכר שמחות שכמותך • אורי גוראל-גורביץ'
  נודניק :-) • אלון עמית
  עוכר שמחות שכמותך • האייל האלמוני
  בעד הפלטוניזם • אלון עמית
  בעד הפלטוניזם • עוזי ו.
  בעד הפלטוניזם • אורי גוראל-גורביץ'
  בעד הפלטוניזם • עוזי ו.
  בעד הפלטוניזם • אלון עמית
  בעד הפלטוניזם • עוזי ו.
  בעד הפלטוניזם • אלון עמית
  בעד הפלטוניזם • האייל האלמוני
  בעד הפלטוניזם • עוזי ו.
  בעד הפלטוניזם • שוטה הכפר הגלובלי
  בעד הפלטוניזם • עוזי ו.
  בעד הפלטוניזם • שוטה הכפר הגלובלי
  בעד הפלטוניזם • האייל האלמוני
  בעד הפלטוניזם • האייל האלמוני
  בעד הפלטוניזם • דני גליק
  בעד הפלטוניזם • עומר
  בעד הפלטוניזם • אורי גוראל-גורביץ'
  בעד הפלטוניזם • עומר
  בעד הפלטוניזם • דני גליק
  הבא בתור הוא סוס • ירדן ניר-בוכבינדר
  הבא בתור הוא סוס • שוטה הכפר הגלובלי
  הבא בתור הוא סוס • דורון הגלילי
  הבא בתור הוא סוס • האייל האלמוני
  הבא בתור הוא סוס • עוזי ו.
  בעד הפלטוניזם • האייל הצעיר
  בעד הפלטוניזם • גדי אלכסנדרוביץ'
  בעד הפלטוניזם • אורי גוראל-גורביץ'
  בעד הפלטוניזם • גדי אלכסנדרוביץ'
  בעד הפלטוניזם • האייל האלמוני
  בעד הפלטוניזם • האייל הצעיר
  בעד הפלטוניזם • גדי אלכסנדרוביץ'
  בעד הפלטוניזם • עומר
  בעד הפלטוניזם • האייל הצעיר
  בעד הפלטוניזם • עומר
  בעד הפלטוניזם • דני גליק
  בעד הפלטוניזם • אלון עמית
  בעד הפלטוניזם • האייל האלמוני
  בעד הפלטוניזם • עוזי ו.
  בעד הפלטוניזם • האייל האלמוני
  נודניק :-) • אורי גוראל-גורביץ'
  נודניק :-) • אורי גוראל-גורביץ'
  נודניק :-) • אלון עמית
  נודניק :-) • אלון עמית
  נודניק :-) • עוזי ו.
  נודניק :-) • אלון עמית
  נודניק :-) • עוזי ו.
  נודניק :-) • אלון עמית
  נודניק :-) • עוזי ו.
  נודניק :-) • אלון עמית
  נודניק :-) • אלון עמית
  נודניק :-) • אורי גוראל-גורביץ'
  נודניק :-) • אלון עמית
  נודניק :-) • אלון עמית
  נודניק :-) • גדי אלכסנדרוביץ'
  נודניק :-) • שוטה הכפר הגלובלי
  נודניק :-) • אורי גוראל-גורביץ'
  נודניק :-) • אלון עמית
  נודניק :-) • האייל האלמוני
  ללא כותרת • א. (כדה''ב)
  ללא כותרת • האייל האלמוני
  ללא כותרת • אלון עמית
  ללא כותרת • האייל האלמוני
  ללא כותרת • אלון עמית
  ללא כותרת • האייל האלמוני
  ללא כותרת • עירקי רציני
  באשר עבדנו אבדנו • אורי גוראל-גורביץ'
  חידה: • שוטה הכפר הגלובלי
  נו? • אורי גוראל-גורביץ'
  נו? • שוטה הכפר הגלובלי
  נו? • אורי גוראל-גורביץ'
  נו? • שוטה הכפר הגלובלי
  באשר אבדנו עבדנו‏1 • אלון עמית
  באשר עבדנו אבדנו‏1 • אורי גוראל-גורביץ'
  באשר עבדנו אבדנו‏1 • אייל מולד(ר)
  באשר עבדנו אבדנו‏1 • אורי גוראל-גורביץ'
  באשר עבדנו אבדנו • אלון עמית
  באשר עבדנו אבדנו • אורי גוראל-גורביץ'
  עוד זווית • אורי גוראל-גורביץ'
  עוד זווית • אלון עמית
  עוד זווית • יזהר
  עוד זווית • אלון עמית
  עוד זווית • האייל האלמוני
  עוד זווית • אלון עמית
  עוד זווית • האייל האלמוני
  עוד זווית • אורי גוראל-גורביץ'
  עוד זווית • אלון עמית
  עוד זווית • האייל האלמוני
  עוד זווית • אלון עמית
  עוד זווית • רודי וגנר
  עוד זווית • אלון עמית
  עוד זווית • עוזי ו.
  עוד זווית • אלון עמית
  עוד זווית • האייל האלמוני
  עוד זווית • יזהר
  עוד זווית • אלון עמית
  עוד זווית • עוזי ו.
  עוד זווית • גדי אלכסנדרוביץ'
  עוד זווית • אלון עמית
  תהא העוצמה איתך • שוטה הכפר הגלובלי
  תהא העוצמה איתך • עוזי ו.
  תהא העוצמה איתך • גדי אלכסנדרוביץ'
  תהא העוצמה איתך • ירדן ניר-בוכבינדר
  תהא העוצמה איתך • אלון עמית
  עוד זווית • האייל האלמוני
  עוד זווית • אלון עמית
  עוד זווית • האייל האלמוני
  עוד זווית • האייל האלמוני
  עוד זווית • אלון עמית

חזרה לעמוד הראשי

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים