בתשובה לד.ק., 21/06/05 17:03
בשם הבורים 310708
למה "אינם ניתנים לביטוי כלל וכלל"? יש מספרים שהם, במובן חזק למדי ומוגדר היטב, לא ניתנים לחישוב, אבל לא כל הטרנסצנדנטיים הם כאלה. למעשה, כל הטרנסצנדטיים המוכרים הם (כמובן) לא כאלה.
בשם הבורים 310711
האם הטרנצנדנטיים המוכרים ניתנים לביטוי ע"י מספרים טבעיים ופעולות חשבון, כמו האלגבריים, או שהם ידועים בשם מוסכם, כמו פיי?
בשם הבורים 310716
למה "ניתנים לביטוי" זה רק מספרים טבעיים ופעולות חשבון? אם אתה מתעקש להגדיר שמספר הוא ניתן לביטוי רק אם הוא אלגברי, אכן תוכל להסיק שרק האלגבריים ניתנים לביטוי.

השם "פיי" הוא לא העניין. אפשר לתת לפאי ביטויים מביטויים שונים המאפשרים לעשות איתו בערך כל מה שרוצים. יש, כאמור, מספר לא בן מנייה של מספרים טרנסצנדטיים שאי-אפשר למצוא להם ביטויים בכלל.
בשם הבורים 310734
אילו ביטויים מתימטיים ניתן לתת לפיי?
האם יש דרך שתופסת את כל או חלק גדול מהלא-אלגבריים שניתנים לביטוי?
בשם הבורים 310791
פאי הוא השורש החיובי הקטן ביותר של המשוואה

sin(x) = 0

או של המשוואה

e^{ix} = -1

הוא שווה גם לארבע פעמים הסכום (1 פחות שליש ועוד חמישית פחות שביעית ועוד תשיעית...), וגם לשורש הריבועי של שש פעמים סכום ההופכיים של כל הריבועים השלמים. הוא שווה לאינטגרל ממינוס אחד עד אחד של שורש (1 פחות x בריבוע) (די x), ולעוד אינספור ביטויים כאינטגרל, טור, או שורש של משוואות שונות ומשונות.

את השאלה השנייה לא הבנתי.
בשם הבורים 311176
אם ניקח את כל המספרים האלגבריים כקבוצה, ואת כל הלא-ניתנים לביטוי כקבוצה אחרת. האם יש דרך אחת (או כמה) שתופסת את כל מי שלא נמצא בקבוצות האלה?
בשם הבורים 311400
לא הבנתי. מה זה "דרך שתופסת", והאם אתה שואל על כל מי שלא נמצא באיחוד שתי הקבוצות הללו, או בקבוצה-המשלימה של כל אחת מהן?
בשם הבורים 311490
תקן אותי אם אני טועה. בעזרת פולינום אני יכול לבטא את כל המספרים הלא טרנסצנדנטליים, נכון? האם יש דרך אחת לבטא את כל המספרים הניתנים לביטוי?
בשם הבורים 311504
לכל מספר אי-רציונלי יש הצגה יחידה כשבר משולב אינסופי, ומכיוון שלכל מספר רציונלי יש הצגה (לאו-דווקא יחידה) כשבר משולב סופי, אפשר אולי לומר שהתשובה לשאלתך היא ''כן - שבר משולב''.
בשם הבורים 311515
האם קבוצת איבריו של השבר המשולב האינסופי היא נל"ר?
בשם הבורים 311522
כל מספר אלגברי הוא שורש של פולינום במקדמים שלמים, כן. זה ודאי לא אומר שבעזרת פולינום (אחד) אתה יכול לבטא את כל המספרים האלגבריים. האם יש דרך אחת לבטא את כל המספרים הניתנים לביטוי - זה תלוי במה אתה מתכוון ב"לבטא". במובן מתאים, אפשר לעשות זאת באמצעות (הו לא, לא שוב!) מכונות-טיורינג.
בשם הבורים 311694
אל תבין אותי לא נכון, אין לי שום דבר נגד מכונות-טיורינג. אני די מחבב את הרעיון, אפילו. אבל לא לזה אני מתכוון בדיוק.

האם יש לכל המספרים הניתנים לביטוי איזשהי תכונה מתימטית משותפת (מלבד היותם ניתנים לביטוי) שדרכה ניתן לבטא אותם (בהשתמש בטבעיים)?
בשם הבורים 311720
זה קצת כמו לשאול, האם לכל הסינים יש איזו תכונה משותפת (מלבד היותם סינים). איזו מין תכונה אתה מחפש? כתבת "מתמטית", אבל נראה שאתה מודע לכך ש"ניתנוּת לביטוי" היא תכונה מתמטית. אם אתה מחפש פרשנות צרה יותר למושג "תכונה מתמטית", תצטרך להסביר מהי, ואז ניתן יהיה לענות על השאלה.
בשם הבורים 312037
אני מחפש תכונה מתימטית צרה יותר מאשר ''ניתנות לביטוי''.
בשם הבורים 312140
אני לא כל כך יודע איך לפרש את השאלה. אולי תמצא עניין בעובדה הבאה, הדנה ב*קבוצות של טבעיים* במקום ב*מספרים ממשיים*: קבוצה של מספרים טבעיים נקראת r.e. (recursively enumerable) אם יש מ"ט המדפיסה את איברי הקבוצה, לאו דווקא לפי הסדר. קבוצה A של מספרים טבעיים נקראת דיופנטית אם יש פולינום במקדמים שלמים

p(x, y1, ..., yn)

כך ש-A היא בדיוק אוסף ה-a-ים עבורם יש פתרון בשלמים למשוואה

p(a,y1, ... yn) = 0.

קל לראות שכל קבוצה דיופנטית היא r.e., ויש משפט מאוד לא טריוויאלי וחשוב האומר שגם ההיפך נכון.

אם זה מעניין אותך, חפש חומר על פתרון הבעייה ה-‏10 של הילברט, או משפט Matijasevic.
בשם הבורים 312227
תודה
בשם הבורים 311031
"יש מספרים שהם, במובן חזק למדי ומוגדר היטב, לא ניתנים לחישוב"

הסקרנות הרגה את החתול. אני לא חתול. מי המספרים אלה? יש דוגמא?

נ.ב.
ממש בלי קשר לנושא הדיון. למה אף אחד לא סיפר לי שגוגל יצא לטייל בהגדרות שמופיעות בשלל המילונים והאינצקלופדיות של הרשת?

למקרה שאני לא השוטה האחרון שגילה את זה: כתבו Define:whatever בשורת החיפוש ולחצו על search. ניתן להשתמש במונחים המורכבים ממספר מילים ולכן יש לכך יתרון חביב למדי על שימוש במילון.

דוגמאות:

בשם הבורים 311033
תגובה 311029 (אני חושב).
בשם הבורים 311043
יש כל מיני הגדרות ל"מספר ממשי ניתן לחישוב" או "מספר ממשי ניתן להגדרה", ובכולן יש רק מספר בן-מנייה של מספרים כאלה, כלומר - רוב המספרים הממשיים אינם כאלה. זה לא מסתורי או מפתיע במיוחד, כך שגם אילו היית חתול היה ממש לא שווה למות דווקא בגלל זה.

דוגמא, כמובן, אי-אפשר לתת - אילו הדגמתי, המספר המודגם היה (מסתמא) ניתן להגדרה באיזשהו אופן סביר.

והנה הצצתי בויקיפדיה וראיתי שזה כבר שם:

וגם

תודה. 311048
גדי השקים קום והשיג אותך!

תגובה 311029
תודה. 311049
''השקים כום'', התכוונת לכתוב, וזה בכלל לא פייר - אני אפילו עוד לא הלכתי לישון.
תודה. 311053
גם אני אפילו עוד לא הלכתי לישון (וזה יכול לתרץ את השגיאים, אולי).

חזרה לעמוד הראשי

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים