בתשובה לסמילי, 18/11/02 12:39
אה. 107462
5. יש בעיה באופן כללי בתורת הקוונטים הלא-יחסותית, עליה אנחנו מדיינים, להתייחס להרס ויצירה של חלקיקים - תורת הקוונטים היחסותית מתייחסת למצבים אלה.
אה. 107467
5. קוונטיזציה שניה לא מחייבת יחסות. נכון שהכל מסתדר הרבה יותר יפה עם יחסות פרטית, אבל עדיין, לא מחייב, מספיק להגדיר אופרטור יצירה ואופרטור השמדה.
אה. 107490
1. אשמח להתבדות.

3. מחכה בקוצר רוח.

4. אם רוצים גם לנבא באופן כמותי תוצאות של ניסויים, יש צורך בשלב כלשהו ליחס לכל "מצב" אבסטרקטי איזו פונקציה ארצית.

5. L2 הוא אבן הלגו ממנה בונים את יתר המכפלות הפנימיות (לכך התכוונתי כשאמרתי "הרחבות טריוויאליות"). אם רוצים לחשב את הנורמה של ספינור לא יחסותי עם ספין חצי, התוצאה היא סכום הנורמות ב- L2 של שני הרכיבים בנפרד. מאחר והנורמות אינן שליליות, הנורמה הכללית סופית אם ורק אם נורמות הרכיבים סופיות. הטיפול בוקטורים וטנזורים אנלוגי. כשרוצים לטפל במצבים בהם מספר החלקיקים אינו קבוע, מתיחסים לכל רכיב עם מספר חלקיקים מוגדר כמו לרכיב של ספין, וחוזרים לחשב עם, סורפרייז סורפרייז, L2 .

5. א. הטנזורים באופן גס מאד הם סוג של הרחבת המושג שדות טנזוריים של הגאומטריה הדיפרנציאלית (ולא במקרה). תחת טרנספורמציית סיבוב אינפיניטסימלית מתקבלות במקרה הכללי שתי תרומות: האחת נובעת מההפרש בין ערכי הארגומנט (הנומינליים) של הנקודה לפני ואחרי הטרנס' (תנע זויתי אורביטלי, קיים אצל כל סוגי השדות), והשניה נובעת מ"סיבוב" הטנזור בתוך המרחב המשיק (מקרה פרטי: סיבוב של וקטור במישור X-Y סביב ציר Z משנה את רכיבי ה- X,Y שלו). התרומה השניה מכונה ספין. ביחסות הפרטית ניתן לזהות את כל המרחבים המשיקים ולכן העסק לובש אופן גלובלי. יוצאים מהכלל הם השדות עם הספין שאינו שלם (כדוגמת האלקטרונים). עבורם, נדרשת הרחבה מסוימת של הרעיון. שדות סקלריים הם טנזורים מדרגה אפס, ולכן אין להם את התרומה מהסיבוב במרחב המשיק (ספין אפס).

6. לכל בעיה בה הפוטנציאל סופי, קיים תחום אסימפטוטי סופי שבו השפעת ה- cut off זניחה כרצוננו.

8. מה, כן?

8. א. כבר הסברתי לעיל שהאופרטורים לא בהכרח קומפקטיים, ושלעיתים קרובות סדרת הע"ע מתבדרת לאינסוף.

8. ב. שימור התנע תלוי בהגדרת הבעיה. אם אדם נופל ממטוס באמצע הלילה, איני יודע מה אלהים יעשה בנידון (מוכן להמר), אבל התנע שלו אינו נשמר (ובשל התנגדות האויר, אפילו לא במינוחים של היחסות הכללית). כנ"ל לגבי בעית אטום המימן כפי שהיא מודגמת בספרי הלימוד הבסיסיים. הסיבה: המערכות אינן סגורות. אם רוצים לדבר על שימור תנע גלובלי (המערכת היחידה שאנו מכירים שהיא אולי סגורה לחלוטין), צריך כבר להכליל אפקטים של גרביטציה, וזה רק מסתבך. אף על פי כן, סופיות המרחב אינה בהכרח גוררת הפרה של חוקי השימור. מרחב מינקובסקיאני סופי עם תנאי שפה מחזוריים, לדוגמא, סימטרי תחת טרנסלציות.
10. עובד גם בכיוון ההפוך: לכל מטרה מעשית, מה שהיה נכון בלי הקופסא ישאר נכון גם איתה. מכביד לפעמים על החישוב, אך מספק את הביסוס המתמטי.

11. "ישאר שם": אם התנע הוא "מספר קוונטי טוב", כלומר: אופרטור התנע חילופי עם ההאמילטוניאן, אז לאחר שביצענו מדידה של התנע, ופונקציית הגל קרסה למצב עצמי של הערך הנמדד, אם נשוב ונמדוד את התנע כעבור יומיים, יתקבל שוב אותו ערך. כלומר: החלקיק "נשאר" באותו מצב תנע.

12. אני שאלתי קודם.

13. הפועל שוב הפסידה, ואיזה מסכנים האוהדים ששוכבים עכשיו בבוץ. סמילי לסמילי :)
אה. 107497
1. זה תלוי בנו.

4. נכון.

קח, כניסוי מחשבתי, רולטה בעלת 36 תאים שוים. גלגל ברולטה כדור, לצורך העניין, ניח שהסיכוי שהכדור יעצר בכל תא הוא שוה, לכן הסיכוי שהכדור יפול בתא החמישי הוא 1/36.

עכשיו, נגדיל, לאט לאט, את מספר התאים, נגיד, פי עשר (יש לנו עכשיו תא לכל זוית). הסיכוי עכשיו שהכדור יעצר בתא החמישים הוא 1/360.

עכשיו, נחליק לגמרי את הרולטה, כך שהכדור יכול להעצר בכל זוית אפשרית (הוא יעצר בגלל החיכוך אם האויר). הסיכוי שהכדור יעצר בדיוק בזוית של 50 מעלות (זה ניסוי מחשבתי, להבהרת נקודה מתמטית, אין בעיה של מכשירי מדידה) הוא 0. ואותו סיכוי קיים לכל זוית אחרת. אבל, הכדור כן יעצר איפשהו, נכון? מכאן אפשר להגיע למספר מסקנות שונות, אפשר להסיק ש"יש אלוהים" ("איך יכול להיות שקרה משהו בעל סיכוי כל כך נמוך ללא יד מכוונת", ראה, למשל, את דיון 425), אפשר להגיע למסקנה שמספר המקומות האפשריים שהכדור יכול להעצר בהם הוא סופי (וזה הטיעון שלך), ואפשר להבהיר שאי אפשר לחשב הסתברות למקום כזה, אבל אפשר לחשב את צפיפות ההסתברות שלו, ולהגדיר את ההסתברות כקיימת רק על תחומים (ואז עושים אינטגרל על התחום), וזה, בקצרה, הטיעון שלי.

5. א. זו לא הרחבה טריויאלית כלל. כמו שאמרתי, L2 הוא ההיטל של וקטור המצב על המרחב, ולכן ברור שהוא תמיד יהיה קיים, אבל, לפעמים, הרבה יותר פשוט לעבוד ישר עם וקטור המצב מאשר עם ההיטל שלו (שיכול לא להכיל מידע מסויים, ואז צריך לעשות היטל על משהוא אחר, וכך הלאה).

5.ב. כן, אז?

6. כן, אבל אז אתה מגדיל את התחום לפי מכשירי המדידה שלך, מה שאומר שהתחום לא מוגבל למעשה.

8. אז זה סותר את הצהרת הפתיחה שלך.

8.א. אה?

8.ב. התנע של המערכת (=היקום) נשמר תמיד. לא רק שאין צורך להכניס גרביטציה, אסור להכניס אותה, משום שאי אפשר להציג אותה באופן שתואם את התיאוריה.

10. שמעת פעם על אוקהם?

11. טוב, עדיין לא הבנתי את הפיסקה.

12. יכול להיות, כאמור לא הבנתי את השאלה שלך.

13. ההבדל הוא שהפעם לא הפסדנו בגלל שהיינו פחות טובים, אלא בגלל שהשופט ...
אה. 107580
4+8. לא טענתי לרגע שמספר המצבים סופי. טענתי רק שיש לו בסיס בן מניה. סדרת המספרים הטבעיים שואפת לאינסוף. היא עדין בת מניה. את טכניקת האינטגרציה על הצפיפות אני מכיר, וגם משתמש בה כשצריך (וגם בפונקציות הדלתא של המיקום, עד כמה שזה אולי יפתיע אותך). זה עדין לא פוטר מהדיון העקרוני בהן. כדי שכדור הרולטה יעצור בדיוק על ערך ספציפי, הוא צריך להיות נקודתי לחלוטין. ואפילו במקרה זה, נוכל לבחור סדרה של מספרים ראציונליים שתתקרב אליו כרצוננו (עצמת הראציונליים, כזכור, בת מניה. לא. לא סופית). באיזה מצב ניתן לומר בודאות מוחלטת שהוא חונה דוקא על אותה נקודה ולא על אף אחת מנקודות הסידרה השואפת אליה?

14. כדי לאפשר לי להבין יותר טוב על מה בעצם דעותינו חלוקות, אבקש את שיתוף פעולתך בבדיקה קטנה. אנסה לתת כאן דוגמא ספציפית, ולאחריה שרשרת טענות. כל שאני מבקש ממך הוא לומר לי מה היא הטענה הראשונה שאינה מקובלת עליך. נימוקים יתקבלו בברכה.

הדוגמא: חלקיק חפשי יחיד חד מימדי וחסר ספין בקופסא (פוטנציאל אינסופי מעבר לדפנות) בין 0 לפיי (לצורך הנוחות):

הטענות:

א. פונקציית הגל של החלקיק בהכרח מתאפסת מחוץ לקטע המדובר.

ב. בתור מצבים עצמיים של האנרגיה ניתן לבחור את המצבים |En> כך ש:
<x|En> = a*sin(nx)
( n טבעי)

ג. מקדם הנירמול a אחיד לכל המצבים ולכן ניתן להתעלם ממנו לצרכי נוחות בכל המקרים בהם השפעתו על התוצאה הסופית היא עד כדי כפל בקבוע.

ד. בסיס לקבוצת המצבים העצמיים של האנרגיה הוא בסיס למרחב המצבים האפשריים של החלקיק.

ה. הערכים העצמיים של האנרגיה פרופורציונליים ל- n בריבוע.

ו. אין ניוון בתת המרחבים העצמיים של האנרגיה.

ז. מתוך טענות ד-ו, קבוצת המצבים שנבחרה בטענה ב' מהווה בסיס למרחב המצבים האפשריים.

ח. כל מצב |b> ניתן להצגה ע"י:
|b> = Sum(n=1,infinity)[|En><En|b>]

ט. בפרט, אם |x> מצב אפשרי עבור החלקיק לכל x בקטע בין 0 לפיי, ואם x1 שונה מ- x2, צריך להתקיים:
0 = <x1|x2> = <x1|Sum(n=1,infinity)[|En><En|x2>] =
= a^-2 *Sum(n=1,infinity)[sin(n*x1)sin(n*x2)]

י. בפרט זה צריך להיות נכון כאשר x1 היא רבע פיי ו- x2 היא שלושה רבעי פיי.

יא. בדיקה מזורזת של איברי הטור הרשום בהצבת הנקודות האמורות (נבחרו משיקולי נוחות), מגלה שהטור החלקי (כלומר: כאשר מבצעים את הסיכום רק עד מספר סופי כלשהו) מבצע אוסילציות מודולו 4, ולכן הטור האינסופי אינו מתכנס (למרות שלפי טענה ט, הטור צריך להתאפס חד משמעית ).

יב. תודה שטסתם אל-על.

(הרעיון שעומד מאחורי הדוגמא: בשל אפשרות המעבר בין בסיסים, לא יתכן שלאותו מרחב יהיו בסיס בן מניה ובסיס אחר מעצמת הרצף, שכן במקרה זה המעבר ביניהם אינו יכול להיות חח"ע ועל, ולפיכך אינו הפיך במקרה הכללי).
אה. 107911
4+8. טענת שהמרחב תחום ובר מניה (תגובה 106790). וזה (בין השאר) מה שהפרכתי.

כדי שכדור הרולטה יעצר על בדיוק על ערך ספציפי הוא צריך להיות כדור מדוייק (ז"א, החיכוך שלו עם המישור הוא נקודתי), וגם עבור כדור לא מדוייק, אפשר להסתכל על נקודת מרכז המאסה, או נקודת המינימום, או כל קונבנציה אחרת שתבחר.

תוכל לבחור מספר רציונלי שיתקרב אליו כרצונך, אבל לא להגיע למיקום המדוייק.

הודאות לא רלונטית לדוגמא (הסברתי את זה בדוגמא עצמה).

14. שים לב שהטיעון שלך הוא מעגלי, ושונה מזה שב תגובה 106790 אפילו סותר את החלק של "תחום".
אה. 107930
14. עזוב מעגליות. נסה להתמודד ענינית. אם הדוגמא בפני עצמה אינה מקובלת עליך, אמור זאת (ואם אין זה קשה, נסה לפחות לומר מה פגום בה לטעמך). אם הדוגמא סבירה בעיניך, נסה לומר באיזה שלב שרשרת הטענות "נשברת" לדעתך. כפי שודאי הבחנת, אימוץ כל הטענות מוביל לסתירה.

לאחר שנבין היכן בדוגמא הספציפית מתפצלות השקפותינו, אולי נוכל ללבן את הבעיה בצורה יותר ממוקדת וקונסטרוקטיבית (פחות סמנטיקה עורך-דינית של "אני התכוונתי ככה ואתה אמרת ככה", ויותר מהות), ומהמסקנה שתתקבל (אם וכאשר) אולי ניתן יהיה להכליל אל המקרה הכללי, ובניסוח שיהיה מקובל על שנינו.

מה דעתך?
טוב, אם אתה רוצה 107956
14. נתחיל בזה שהסכום כן מתאפס. להזכירך, הסכום הוא לא מ1 עד N כשN גדול כרצוננו, אלא מ1 עד אין סוף. עכשיו, המספרים בסדרה הם:
a_{1,5,9,13,17,21,...} = 1/2
a_{2,6,10,14,18,22,...}= -1
a_{3,7,11,15,19,23,...} = 1/2
a_{4,8,12,16,20,24,...} = 0
עכשיו, נעשה תרגיל פשוט אך חביב,
sum(n=1,infinity)[a_n] = sum(m=0,infinity/4)[sum(q=1,4)[a_{m*4+q}]] = sum(m=0,infinity)[sum(q=1,4)[a_{m*4+q}]] = sum(m=0,infinity)[1/2-1+1/2+0] = sum(m=0,infinity)‏0=0

ולעניין, קודם כל, ה"תחום" ("צריך תמיד לתחום אותו באיזה שהוא אופן" תגובה 106790), באיזה אופן תחמת את אופרטור האנרגיה מסעיף ה (תגובה 107580)?

עכשיו, תאר לעצמך שהייתי טוען טענה דומה (מבחינה מבנית) לזאת שטענת על מכניקת הקוונטים, באשר למכניקה הניוטונית, משהו כמו "פורמלית, כדי שחלקיק יתנהג יפה, צריך תמיד לתחום אותו באיזה שהוא אופן, ופעולה זו הופכת את התאוצה למאונכת למהירות." ולאחר שהיית מנסה לטעון שזה לא נכון, הייתי מביא כדוגמא את התנועה המעגלית (ובלי קשר לסוג התנועה, גם הטיעון מעגלי).

באותו אופן, אתה מנסה להוכיח שמספר התוצאות הוא תמיד בן מניה, ע"י לקיחת מערכת שמספר התוצאות בה הוא בן מניה, פורש ולא מנוון. נסה לקחת מערכת אחרת, פיזיקלית יותר, כמו בור פוטנציאל סופי. גם עם הבור עמוק כרצונך, כך שהתנהגות החלקיק בבור תהיה זהה עד כדי דיוק קטן כרצונך להתנהגות בבור האין סופי, כאשר תנסה לעשות את התרגיל מלמעלה, מצפה לך הפתעה קטנה. אותה "הפתעה" צפויה לך כאשר תעבור למערכת הפיזיקלית ביותר שניתנת לפיתרון בעזרת הפורמליזם של שרדינגר, הפוטנציאל הקולומבי.

לצורך העניין, הטענה שלך היא טענת הכללה ("צריך תמיד ..."), ולכן מספיקה לי דוגמא אחת על מנת להפריך, בעוד שאתה צריך למצוא הוכחה, ודוגמא בודדת לא מספיקה להוכיח.
אני לא חושב שהסכום מתכנס לפי ההגדרה שאני מכיר. 107958
לכל הפחות, בשביל שטור יתכנס, איבריו חייבים לשאוף לאפס, וזה לא המצב - הם מקפצים ממקום למקום.
אני לא חושב שהסכום מתכנס לפי ההגדרה שאני מכיר. 108029
לא רק שלא אמרתי ''מתכנס'', אלא הבהרתי שהוא לא מתכנס. ראה פירוט למטה.
כרטיס צהוב 107965
אז זה מה שפיזיקאים עושים כשאף-אחד לא מסתכל?
לא רק שהטור אינו מתכנס בהחלט‏1, הוא אפילו אינו מתכנס בתנאי (כי, כפי שציין כליל, האיבר הכללי שלו אינו שואף לאפס). בטור הזה אפשר לסדר את האיברים מחדש ולקבל כל תוצאה (שהיא חצי שלם), ולכן הוא מתכנס לאפס בדיוק באותה מידה‏2 שהוא מתכנס ל-‏19.5.

1 מתכנס בהחלט = טור הערכים המוחלטים מתכנס
2 טוב, לא ממש באותה מידה. הוא מתכנס לאפס במובן של צ'זרו, אבל זה כלי שלא הייתי מפקיד בידים של פיזיקאי...
כרטיס צהוב 107979
אנחנו עושים דברים גרועים בהרבה:
כרטיס צהוב 107980
ואכן, זה בהחלט שייך למערכת הטיעונים שלי. אם התחלנו ממערכת שמתנהגת יפה, ומאד ברורה ופשוטה מבחינה מתמטית, אז איך זה שפתאום אנו צריכים "לרמות" ולהתנות סדרי סכימה רק כדי לאנוס את התוצאה הרצויה לנו?

התשובה, לטענתי, היא שהכנסנו לעסק משהו שאינו כשר לחלוטין (במובן המתמטי "האורתודוקסי"), והוא המקור לצורך בהסברים התמוהים.

את הרעיון שמאחורי בניית הדוגמא, הסברתי מתחת לתאור שלה. להשקפתי, הטענה הבעייתית (זו שפותחת את הפתח להתנהגויות המוזרות) היא החלק של טענה ט' שאומר: "...אם |x> מצב אפשרי עבור החלקיק לכל x בקטע...".

ניתן תאורטית לקבל כל ערך בקטע כתוצאה של מדידת המיקום (אף פעם לא *ממש* התכוונתי לטעון אחרת), אבל פונקציית הגל אינה יכולה לקרוס לפונקציית דלתא בדוגמא הנתונה, מבלי שיהיו לה "היטלים בעייתיים" על המצבים העצמיים של נקודות אחרות בקטע (הטור שאינו מתכנס בדוגמא). לעומת זאת, במדידת אופרטור "כשר" (כמו האנרגיה, בדוגמא לעיל), פונקציית הגל קורסת למצב עצמי "אמיתי" שהוא אורתוגונלי לחלוטין (וללא צורך באקרובטיקה) לכל מצב עצמי השייך לערך עצמי אחר.

למרות שהדוגמא ספציפית ביותר, ודי מוגבלת, הבעיה היא כללית, ומתגנבת בצורה זו או אחרת בכל פעם שמאפשרים את השימוש בפונקציות שאינן ב-L2. זה לא אומר שאסור לעשות כן, אבל זה בהחלט אומר שאנו צריכים לזכור שהענין כרוך ב"תשלום" שאנו נדרשים לתת עליו את הדעת ואת הדין (כלומר: לסדר את הקצוות בתום התהליך כך שהכל יחזור "להתנהג יפה").

וזה כל מה שניסיתי לטעון מלכתחילה.
לגבי הדוגמא - 107997
למה בסעיף ט' "צריך להתקיים" מה שכתוב שם (שהוא לא נכון בעליל)?
לגבי הדוגמא - 108005
איני בטוח שהבנתי את השאלה.
אנסה לענות לפי מה שאני חושב שהבנתי.
אם {|k>} בסיס אורתונורמלי של המרחב, אז האופרטור:
Sum({k})[|k><k|]
צריך להיות שווה לאופרטור היחידה (זו בסך הכל הצגה של הוקטור לפי הבסיס {k} ). איני זוכר אם הפיסיקאים קוראים לזה "שלמות" או "סגירות" או ווטאבר, אבל משתמשים בזה כאילו אין מחר.

בדוגמא שנתתי, זה אכן שווה לאופרטור היחידה ביחס ל-L2, אך לא ביחס לפונקציות החורגות מ-L2 כדוגמת פונקציות הדלתא (בכוונה נמנעתי שם מלהזכיר פונקציות דלתא במפורש, אבל זה נכנס בדלת האחורית בטענה ב').

ההשוואה לאפס היתה מתחייבת אם אופרטור המיקום היה "כשר" כי אז מדובר במכפלה פנימית של פונקציות עצמיות השייכות לע"ע שונים.

אם החלק הראשון של טענה ט' היה נכון, בהחלט הייתי מצפה שגם החלק השני יחזיק.

עניתי?
לגבי הדוגמא - 108014
בדוגמא, אתה מסביר שכל פונקציה (אינטגרבילית) אפשר לכתוב כטור פורייה בעזרת הבסיס (sin(nx. ההתכנסות תהיה בנורמה המתאימה (ולא בהכרח התכנסות נקודתית בכל הקטע).
בסעיף ט', לא הבנתי האם x1,x2 הם מספרים או הפונקציות הקבועות המתאימות, ולמה סתם שתי פונקציות צריכות להיות אורתוגונליות זו לזו.
לגבי הדוגמא - 108031
האבחנה בין ההתכנסות בנורמה להתכנסות נקודתית אכן חשובה כאן. אם לא מתעקשים להתיחס לאופרטורים כמו מדידת המיקום כאל שווי סטטוס לאופרטורים כמו מדידת האנרגיה, ההתכנסות בנורמה מספיקה בהחלט. ההתעקשות, לעומת זאת, מובילה לשעטנז, ומספקת את תרועת הפתיחה לקירקס.

הדרישה מאופרטור של מדידה "אמיתית" היא שהשפעת המדידה תהיה קריסה של פונקציית הגל אל תת המרחב העצמי השייך לערך העצמי שהתקבל במדידה (הרחבות ועידונים ניתן לקרוא במאמרים של ירדן ניר, וזו הזדמנות נאותה לומר לו מילה טובה על הפרוייקט), ושההיטלים על תתי המרחב העצמיים של ע"ע אחרים יתאפסו. ניתן גם לנסח את הדרישה בצורות אחרות, אבל כדי לקבל עקביות של התורה עם הניסוי, היא צריכה להכנס בצורה זו או אחרת.

לטענת סמילי, מדידת המיקום היא מדידה אמיתית במובן הנ"ל לא פחות ממדידת האנרגיה (לדוגמא). מאחר והע"ע של מדידת המיקום מצופים באופן טבעי להיות ערכי x בקטע, אזי x1,x2 בדוגמא שנתתי הם ערכים עצמיים (מספרים בין אפס לפיי) היכולים להתקבל כתוצאה במדידת המיקום, ומתוך הדרישה עבור אופרטורי מדידה שתוארה בפיסקה הקודמת, צריכים להיות להם מצבים עצמיים מתאימים |x1> , |x2> (אורתוגונליים, כשהע"ע, כלומר הנקודות, שונים). מאחר ומדובר בקבוצת ע"ע מעצמת הרצף, תנאי האורתוגונליזציה הבא בחשבון הוא:
<x1|x2> = Delta(x1-x2)
כעת, כדי שנוכל להשתמש בתוצאות מההצבה למשוואת שרודינגר לצורך ניבויים פיסיקליים, יש צורך לייחס פונקציית גל לכל מצב שהוא. מהמצב |x0> אנו מצפים ללוקאליזציה מלאה של פונקציית הגל בנקודה x0 (כלומר: הסתברות 1 למצוא את החלקיק שם והסתברות אפס למצוא אותו בכל נקודה אחרת). לכן פונקציית הגל המתאימה למצב זה תהיה
Delta(x-x0)
ודאי הבחנת שיש פה בעיה, כי אם מעונינים בריבוע הערך המוחלט של פונקציית הגל, ניתן ברגולריזציות מסוימות "להחליק" את הענין, בעוד שגישות אחרות מובילות להתבדרות, וזה אנלוגי, ולא במקרה, לאותו טור מתנדנד שקיבלנו בדוגמא. בכל מקרה, אנו נדרשים בשלב זה להפליג מנמל הבית הבטוח של המתמטיקה "המסודרת" לים הפרוע של ההסברים התמוהים (והלינק של easy בהחלט לענין).
עבור מצב כלשהו |a> , שפונקציית הגל המיוחסת אליו היא a(x) , ניתן לבצע (ובאופן עקבי!) את ההתאמה:
a(x) <=> <x|a>
כלומר: הערך של פונקציית הגל בנקודה שווה להיטל המצב על הנקודה.
זה אמור להסביר את הרישום בטענה ב' (בדוגמא ההיא), אלא ששם הולכים בכיוון ההפוך: קודם מוצאים את פונקציות הגל מתוך משוואת שרודינגר (הסינוסים הרשומים), ואז מתאימים אותן למצבים העצמיים של האנרגיה.

ומכיון שהגעתי עד הנה, אוסיף כמה מילים לגבי "הדוגמא":

הטענה המרכזית, שממנה נגזר כל ההמשך, ושעליה ציפיתי מסמילי לחלוק, היא טענה ד' (הניסוח קצת דפוק, אבל הרעיון שלה מובן).
היא גם קשורה לשאלתך הקודמת כי נכונותה קובעת אם האופרטור שתארתי:
Sum({k})[|k><k|]
שווה לאופרטור היחידה, או רק להיטל על תת מרחב.
אם סמילי היה חולק על טענה זו, הטיעון היה ממשיך כך:

א'. קיים מצב |f1> שאינו נפרש ע"י קבוצת המצבים העצמיים של האנרגיה.

ב'. ניתן לייצר ממנו מצב |f> אורתוגונלי ל"תת המרחב העצמי של האנרגיה" ע"י חיסור ההיטל על תת מרחב זה.

ג'. מטענה א' מתחייב כי |f> אינו אפס.

ד'. אופרטור האנרגיה ניתן לרישום באופן כללי כך:
E~ = Sum({a})[Ea|Ea><Ea|]
כאשר הע"ע Ea ממשיים (אם משתמשים בזה כהגדרה, "עוקפים" את שאלות ההרמיטיות והקומפקטיות והליכסון).

ה'. מתקיים‏1:
E~|f> = 0
ולכן |f> מצב עצמי של E~ השייך לע"ע 0.

ו'. משוואת שרודינגר (המתאימה ל"דוגמא" הספציפית) עבור מצבים עצמיים של האנרגיה היא:
const*f"(x) = Ea*f(x)

ו'. מכאן מתחייב שב"דוגמא" הספציפית שלנו:
f(x) (= <x|f>) =0
(בשל תנאי השפה באפס ופיי).

ז'. טענה ו' סותרת את טענה ג'.

1 ניתן לטעון שהטענה בעייתית ושאופרטור האנרגיה בהגדרתו בטענה ג' הוא רק צימצום ל"תת המרחב של האנרגיה" ואינו תופס מחוץ לו. למעשה גם אפשר כאן לטעון למעגליות, ושכפירה בטענה ד' שקולה לכפירה בטענה ד "המקורית".
משמעות הכפירה היא שיש מצבים שלא ניתן לבצע עליהם מדידת אנרגיה. אחד מחברי הטובים טוען שיש שלושה סוגי פיסיקאים שיסכימו לחיות עם זה:
אהבלים גמורים,
שאקלים יצירתיים סטייל הוקינג,‏2
אהבלים גמורים שמחזיקים מעצמם שאקלים יצירתיים סטייל הוקינג.

2 אלה גם יביאו נימוקים כבדי משקל שיתמכו בטענותיהם.
(וציטוט חפשי מתוך "שלמה המלך ושלמי הסנדלר": "אם בין דברי חכם ובין דברי טיפש כאילו אין הבדל, הבדל בכל זאת יש...").
שתי נקודות: 108039
1. כמו שהסברתי, במעבר לרצף עוברים מהסתברות לצפיפות הסתברות (מה שאמור לחסוך לך את ה"בעיה").

2. אופרטור מדידה אמור להיות Complete.
שתי נקודות: 108051
2. אז אם אני מבין אותך נכון, אתה מסכים עם טענות ד ו- ד' (המקורית, והמחודשת). מכאן אני מסיק שהמחלוקת בינינו (בדוגמא הנתונה) היא לגבי התאפסות הטור. אני בכיוון?

1. עדין, גם כשמאמצים את הגישה שלך בתור הנחת עבודה, אם המדידה נתנה את הערך x8 ואם יש לו מצב עצמי מתאים, ואם החלקיק נמצא באותו המצב (ברגע הקריסה, נניח), נצפה שכמה שלא נקטין את "החלון" סביב x8, עדין ההסתברות שהוא ימצא (ברגע הקריסה) בתחומי החלון תהיה 1. זה לא מה שאתה טוען כל הזמן? מהי אם כך פונקציית הגל שהיית מיחס למצב העצמי של x8 ?
שתי נקודות: 108117
1. לא, המחלוקת ביננו היא על הצורך לתחום את המצבים העצמיים, ועל התוצאה ברת מניה שצורך זה גורר *תמיד*.

3. "פונקציית גל" היא ההיטל של המצב על המצבים העצמיים של אופרטור המרחב, במקרה שהמצב הוא |x8> אז פונקציית הגל תהיה <x|x8> שהיא פרופורציונאלית לדלתא של דיראק (בהנחה שהמרחב רציף).
דגימה של מקום 108250
אני מנסה (שוב) לפענח את מה שאתה טוען. אנא הכחש אם יש צורך.

פונקצית הגל היא פונקציה במרחב L2 על אוסף המצבים האפשריים. מדידה "אידיאלית" מחזירה ערך-עצמי של אופרטור המדידה, ובאותו זמן מקריסה את פונקצית הגל למרחב העצמי של הערך הזה. זה קורה, למשל, כשמודדים אנרגיה (או ספין), כי יש להם ערכים דיסקרטיים (שניתן להבחין ביניהם).

לעומת זאת, כשמודדים מקום, לכל ניסוי יש מגבלות של דיוק (כי אוסף הערכים האפשריים הוא רציף), ולכן לא קיימת מדידה "אמיתית" של מקום. כתחליף, אפשר להניח שמודדים שאלות כן/לא על קופסאות קטנות, ומדידה כזו מקריסה את פונקצית הגל למרחב מתאים (מן הסתם, סכום המרחבים העצמיים המתאימים לערכים שבקופסא, מה ששקול לצמצום הפונקציה לקופסא הזו).
דגימה של מקום 108263
להוציא אי אלו פוטנוטס, נראה לי שהבנת את טענותי.

מרחב פונקציות הגל הוא L2, כל בסיס אמיתי בו חייב להיות בן מניה, וכל האופרטורים חייבים להיות ניתנים להצגה בבסיסים אלו.

הבעיה במדידת המיקום אינה רק ענין של מגבלות הניסוי‏1, אלא בילט אין לתוך התורה (ומהסיבה שאתה ציינת): הכנסת פונקציות ואופרטורים שאינם ב-L2 בהכרח פותחת פתח לכל מיני תוצאות מפוקפקות (ואני מקוה שמספר הדוגמאות שטיפלתי בהן מעבירות לפחות את "ההרגשה" של הרעיון). לכן יש למצוא שיטות רגולריזציה להחזרת העסק למוטב. חלוקה לקופסאות קטנות היא אחת משיטות אלה, אם כי אין חובה להגדיר מראש את גודל הקופסאות ואת מספרן (וכדאי לזכור שמותר לנו מספר בן מניה של קופסאות גם על קטע סופי).אין גם חובה להגדיר מראש מה הן "נקודות המרכז" של הקופסאות, כך שא-פריורי אנו מאפשרים רצף של תוצאות אפשריות (הסבר: ניתן, למשל, לבנות סביבה קטנה כרצוננו סביב הערך שהתקבל בפועל, ואח"כ לחלק את יתרת המרחב בצורה שרירותית, ביודענו שלאחר הקריסה פונקציית הגל תחומה לאותה סביבה קטנה, אך שייכת ל-L2).

ראה גם את תשובתי לשאלתך בתגובה 108261

1 פיסיקה היא מדע ניסויי. לא ניתן להכריע בין שתי תאוריות, כל עוד ההבדלים בפרדיקציות שלהן נמצאים מעבר ליכולות הניסוי (הסמנטיקה של סמילי לגבי ההבדל בין "מודל" ל"תאוריה" ממש לא מדברת אלי).
שוב L2? 109109
על בסיס "פיסיקה היא מדע ניסויי. לא ניתן להכריע בין שתי תאוריות, כל עוד ההבדלים בפרדיקציות שלהן נמצאים מעבר ליכולות הניסוי", לא ברור לי איך הבנת שההבדלים בין מודל לתיאוריה הם סמנטיים, משום שהם לא.

מעבר לכך, בהחלט ניתן (ואף חיוני) להכריע בין שתי תיאוריות שנותנות תחזיות שונות, גם ללא יכולת אמפירית, הרי על כל תיאוריה אפשר להוסיף אין סוף (בשבילך, בר מניה) תיאוריות נוספות שנותנות בדיוק את אותה תחזית. ואני שוב שואל אם שמעת פעם על התער של אוקהם? אבל, זה *בהחלט* לא קשור להבדל בין מודל לתיאוריה.
כרטיס צהוב 108030
כמו שאיזי ציין, ובצדק, זה עוד כלום.

הטור, לא מתכנס, והסכום, מה לעשות, עדיין אפס. אי "אפשר לסדר את האיברים מחדש ולקבל כל תוצאה", משום שהסכום הוא, כמו שהבהרתי, לא עד N גדול כרצונך, אלא עד *אין סוף* בכבודו ובעצמו, ולכן, כל סידור מחדש של האיברים יתן לך אפס, משום שלכל איבר שנמצא בסכום גם שכניו לרבעיה נמצאים בסכום, משום שכל המספרים הטבעיים נמצאים בסכום. את צ'זרו אני לא מכיר, אבל ההיסטוריה לימדה אותנו שכלים מתמטים שלא ניתנו בידי פיזיקאים, הומצאו על ידם (בצורה שגרמה למתמטיקאים לתסכולים רבים).
בדיוק! 108033
ושלא יבלבלו לנו ת'מוח שיש מספרים אי זוגיים שאינם ראשוניים...
הסבר בבקשה 108038
כרטיס צהוב 108249
אם הטור‏1 לא מתכנס (והוא לא!), אז אין לו בכלל "סכום".

אפשר לסדר את האברים מחדש באופן הבא. ראשית, נסכם 37 אברים השווים ל- 1. אחר-כך, נסדר את הנותרים ברביעיות: 0, 2-, ושני האברים השווים ל-‏1, שהם הבאים בתור. הסכום של כל רביעיה הוא 0, ולכן סכום הטור הוא 37. זה נכון בדיוק כמו הטענה שהסכום הוא אפס.

דוגמא נוספת (ומוכרת): את הטור
1-1+1-1+1-1+1-1+1...
אפשר לסכם (בלי לשנות סדר) כ-
(1-1)+(1-1)+(1-1)+...
ולקבל 0, ואפשר גם לסכם אחרת,
1+(-1+1)+(-1+1)+(-1+1)+...
ולקבל 1. האמת היא שהטור לא מתכנס.

כדאי להבהיר מה הפירוש של "טור מתכנס". נתונה סדרה של מספרים. הסדרה הזו מאפשרת להגדיר סדרה אחרת, של הסכומים החלקיים (מהאיבר הראשון עד ה-n-י). אומרים שהטור מתכנס, אם סדרת הסכומים החלקיים מתכנסת.
העניין הוא ששינוי של סדר האיברים *משנה* את סדרת הסכומים החלקיים - וכעת זה בכלל לא ברור שהסדרה החדשה חייבת להתכנס לאותו גבול כמו הישנה.
לעומת זאת, יש משפט שמבטיח שאם טור הערכים המוחלטים מתכנס, אז דווקא מותר לשנות את סדר האיברים (ותמיד מתקבלת אותה תוצאה).

1 נזכיר שמדובר בטור שאיבריו הם 0, 1, 2-, 1, 0, 1, 2-, 1, ... (מחזור ארבע). אני מכפיל בשתיים כדי לחסוך בסימנים מתמטיים סבוכים כגון 1/2.
ותודה שטסתם 108255
חדו''א א'.
כרטיס צהוב 109091
האם הטור 0,0,0,0,... מתכנס?

התרגיל של שינוי הסדר לא תקף משום שאתה שובר סימטריה.
כרטיס צהוב 109117
ולמה שלא יתכנס? סדרת הסכומים החלקיים היא 0,0,0,0,... ולכן מתכנסת ל 0.
מתוך הנחה שתגובתו של עוזי דומה 109118
ומה ההבדל בין הסדרה:
S1={0,0,0,0,0,...}
לסידרה:
S2={1/2-1+1/2+0,1/2-1+1/2+0,1/2-1+1/2+0,1/2-1+1/2+0,1/2-1+1/2+0,1/2-1+1/2+0,...}
מתוך הנחה שתגובתו של עוזי דומה 109131
אין הבדל, רק אל תמשיך עכשיו בכיוון של להזיז את הפסיקים או לשנות את סדר החיבור, או שאדון אותך לחדו''א א' אצל עוזי.
ואם נמשיך תחת אותה הנחה, 109137
מה ההבדל בין הסדרה:
S2={1/2-1+1/2+0,1/2-1+1/2+0,1/2-1+1/2+0,1/2-1+1/2+0,1/2-1+1/2+0,1/2-1+1/2+0,...}
לסדרה:
S3={sum(q=1,4)[a_q],sum(q=1,4)[a_q],sum(q=1,4)[a_q],sum(q=1,4)[a_q],sum(q=1,4)[a_q],sum(q=1,4)[a_q],sum(q=1,4)[a_q],...}
כאשר a_q מוגדר בתגובה 107956?
ואם נמשיך תחת אותה הנחה, 109183
מה ההבדל בין הסדרה:

{1-1, 1-1, 1-1, 1-1, 1-1, 1-1, ...}

לסדרה:
{1, 0, 1, 0, 1, 0, 1, 0,...}
?

הן בכלל לא אותה הסדרה. במקרה, אם נציג את האחרונה כטור:

{1, 1-1, 1-1+1, 1-1+1-1, 1-1+1-1+1, ...}

היא תראה כאילו הראשונה היא "סידור מחדש" של האחרונה. יופי. לא תמיד סידור מחדש עובד, וההגדרה של סכום של טור היא הגדרה מאד מדוייקת - היא לא מכסה סידור מחדש, אבל ניתן להוכיח איתה שתחת תנאים מסויימים (כגון כאשר הטור מורכב מאיברים אי-שליליים ומתכנס, אם אינני טועה), מקבלים אותו הדבר גם אם "מסדרים מחדש," לכל סידור מחדש.
אתה מדלג על שלבים. 109186
האם שתי הסדרות שהצגתי למעלה זהות?

שים לב שאני לא עוסק ב"סידור מחדש".
אתה מדלג על שלבים. 109190
אתה עוסק בסכימה חלקית, שגם היא לא רעיון טוב במיוחד, שוב, אלא אם מדובר בטור מתכנס עם איברים אי-שליליים.
שים לב לכותרת 109192
למה חלקית? ומה התשובה לשאלה ששאלתי?
שים לב לכותרת 109193
כן, ולשתיהן יש קשר מקרי בלבד לסדרה המקורית.
יפה, אז נמשיך תחת אותה הנחה 109200
האם מכאן אפשר להסיק ש:
sum(m=0,infinity)[sum(q=1,4)[a_{m*4+q}]]=0
כאשר a_n מוגדר בתגובה 107956
יפה, אז נמשיך תחת אותה הנחה 109226
זה לא מסובך, זה מתמטיקה. יש הגדרה ל"טור מתכנס", ורק אם "זה" עונה להגדרה - אז "זה" הוא "טור מתכנס". הסכום שלך לא מקיים את התנאים - ולכן הסכום שלך אינו טור מתכנס.

ולשאלתך: לא, מכאן כמובן שאי אפשר להסיק שהוא מתכנס. "הוכחת" שהטור ...+(0.5+1-1-0.5)+(0.5+1-1-0.5) מתכנס. זה לא משנה את העובדה ש- ...5+1-1-0.5+0.5+1-1-0.5+ לא מתכנס.
עכשיו, נחזור אחורה 109406
שים לב, אתה טוען ש:
m(m=0,infinity)[sum(q=1,4)[a_{m*4+q}]]!=0
(בכל אופן, זה מה שאני מבין מ"ולשאלתך: לא,...")
האם אתה טוען ש:
1. sum(m=0,infinity)[sum(q=1,4)[a_{m*4+q}]]!=sum(m=0,infinity)[1/2-1+1/2+0]
2. sum(m=0,infinity)[1/2-1+1/2+0]!=sum(m=0,infinity)‏0
3. sum(m=0,infinity)‏0!=0
4. תשובה אחרת.
בלי הנחות 109632
הטור
(1) sum(m=0,infinity)[sum(q=1,4)[a_{m*4+q}]]
מתכנס, וסכומו אפס. גם הטורים בסעיפים 1,2,3 שלך מתכנסים לאפס.

העניין הוא שהטור הראשון אינו שווה לטור
(2) sum_{i=0}^{\infty}a_i
שאינו מתכנס. סדרת הסכומים החלקיים של (2) היא מחזורית, ואינה מתכנסת (לכן אומרים שהטור אינו מתכנס); סדרת הסכומים החלקיים של (1), בגלל שהיא כוללת רק סכומים של רביעיות אברים בטור המקורי, היא תת-סדרה של סדרת הסכומים החלקיים של (2). למעשה, זוהי הסדרה הקבועה 0 (שלכן מתכנסת לאפס).
גם אתה מדלג על שלבים? 109741
ז"א, שהתגובה של גיל (תגובה 109226) לא נכונה, והמסקנה שלי (תגובה 109200) נכונה?
חלילה. 109743
בתגובה של גיל (תגובה 109226), קשה לפענח למה מתייחסות המלים "הסכום שלך" בפסקה הראשונה. בכל מקרה, שני המשפטים האחרונים שלו מדוייקים: הטור ...+(0.5+1-1-0.5)+(0.5+1-1-0.5) מתכנס, והטור ...5+1-1-0.5+0.5+1-1-0.5+ (ללא הסוגריים) אינו מתכנס. הסיבה היא, כאמור, שסדרת הסכומים החלקיים מדלגת בין כמה ערכים, ואין לה גבול.
המסקנה בתגובה 109200 נכונה, אלא שהיא לא קשורה לשאלה המקורית; השוויון הראשון משמאל ב"תרגיל" של תגובה 107956 אינו נכון (כי בצד ימין שלו יש מספר (0), ובצד שמאל משהו שאינו מוגדר).
ועכשיו, אתה גם סותר את עצמך 109745
מצד אחד:
"בכל מקרה, שני המשפטים האחרונים שלו מדוייקים,..."
ומצד שני:
"המסקנה בתגובה 109200 נכונה,..."

עכשיו, אם שני המשפטים האחרונים נכונים, אז גם המשפט הראשון נכון, כולל, כמובן את "ולשאלתך: לא,...". אבל, השאלה (שהתשובה אליה, כזכור, שלילית) היא האם ניתן להסיק את המסקנה שבתגובה 109200, ואם לא ניתן להסיק, הרי שהמסקנה לא נכונה...

אז מה התשובה לשאלה בתגובה 109741?
חלילה וחס. 109748
שני המשפטים האחרונים של גיל (<בתגובה 109226>) מדוייקים:
(1) הטור ...+(0.5+1-1-0.5)+(0.5+1-1-0.5) מתכנס.
(2) הטור ....5+1-1-0.5+0.5+1-1-0.5.+ (אותו דבר רק ללא סוגריים) לא מתכנס.

המסקנה בתגובה 109200 נכונה (שכן היא חוזרת על הטענה (1) לעיל). היא לא מוכיחה את מה שכתבת בתגובה 107956, שבה אתה בעצם אומר שטענות (1) ו-(2) שקולות (והן לא).

אני לא יודע מה אמר גיל על התגובה שבה הסברת שקודם כשהוא שאל אם הטור מתכנס התכוונת בכלל לטור אחר ולכן התשובה שלילית אבל אחר כך כשהוא אמר על טור אחר שאינו מתכנס דיברתם בעצם על הטור הראשון, ולהיפך. קצת קשה לי למצוא את תחילת חוט המחשבה הזה, שיכול לגרום לקערת ספגטי להרגיש כמו מסרק.

התשובה לשאלה בתגובה 109741 נשארת תגובה 109743.
מכאן, גם אתה וגם גיל דילגתם על שלבים 109753
שאלתי שאלה פשוטה (כאן תגובה 109200), השלב בו אנחנו נמצאים הוא בדיוק בתשובה לשאלה הזו. האם אפשר לעבור לשלב הבא מתוך הנחה שהתשובה לשאלה הזו היא חיובית (ושתשובתו של גיל לא נכונה), או שצריך להמשיך להתעמק בנקודה?

להזכירך, השאלה היא:
"האם מכאן אפשר להסיק ש:

sum(m=0,infinity)[sum(q=1,4)[a_{m*4+q}]]=0

כאשר a_n מוגדר בתגובה 107956?"

(אפילו הוספתי סימן שאלה), בבקשה, אין צורך בפירוט אם התשובה חיובית, רק במידה והיא שלילית.
אני מדלג רק על שלבים מיותרים 109917
הטענה שהטור ההוא (שבתגובה 109753) מתכנס לאפס - נכונה. הטור (sum(a_n (כאשר a_n מוגדרים באותו אופן), לעומת זאת, אינו מתכנס.

בהקדמה ("האם מכאן אפשר להסיק") לא ברור לי מהו אותו "כאן".
אין דבר כזה ''שלבים מיותרים'' 109940
ה"כאן" הוא, כמובן, התוצאה האחרונה שאושרה כנכונה ע"י המגיבים (ואם תעקוב אחרי הדיון, אחורה, תגלה שמדובר בתגובה 109137).
בטח שיש 109948
כדי שלא להטעות את הציבור, נסכם:

0. הסדרה a_q מוגדרת בתגובה 107956, והאיבר הכללי שלה מתנדנד (עם מחזור ארבע). מכיוון שסכום הערכים בכל מחזור הוא אפס, סדרת הסכומים החלקיים שלה גם היא מתנדנדת, עם אותו מחזור.

1. הטור ...+a1+a2+a3+a4+a5+a6+a7+a8+a9 אינו מתכנס.

2. הטור
(a1+a2+a3+a4)+(a5+a6+a7+a8)+(a9+...)+...
מתכנס (לאפס).

3. הטור
a1+(a2+a3+a4+a5)+(a6+a7+a8+a9)+(a10+...)+...
מתכנס (לחצי).

4. הטור
a1+a2+(a3+a4+a5+a6)+(a7+a8+a9+a10)+(a11+...)+...
מתכנס (למינוס חצי).

5. הטור
a1+a2+a3+(a4+a5+a6+a7)+(a8+a9+a10+a11)+(a12+...)+...
מתכנס (לאפס).
לא במקרה הנוכחי, אבל נמאס לי 109962
שים לב לתגובה המקורית שלי (תגובה 107956 ובעיקר לתגובתי לכליל תגובה 108029).

הייתי יכול להמשיך עוד כמה שלבים, אבל האמת היא שאני חושב שהנקודה הרטורית שרציתי להבהיר הובהרה בצורה האופטימלית (זאת אמרת, הנקודה הרטורית שרציתי להבהיר לא תובהר טוב יותר ע"י המשך הדיון בכיוון אליו גררתי אותו), ולכן, אני לא אמשיך לשאול את השאלות.
אם נמאס לך אז תתעלם, 109967
אבל בתגובה 107956 כתבת :
sum(n=1,infinity)[a_n] = sum(m=0,infinity/4)[sum(q=1,4)[a_{m*4+q}]]
וזה יכול להיות נכון רק אם יש לך איזו הגדרה לא סטנדרטית ל (sum(n=1,infinity.
נכון 109995
נכון 110002
נו, אז לא היית יכול להצהיר על זה מפורשות לאורך כל הדיון על התכנסות טורים, להסביר את ההגדרה שלך ולסיים את העניין? עם כל הכבוד לרטוריקה שלך, נראה לי ‏1 שלפעמים אתה פשוט נהנה להיות בלתי מובן.
____________________
1- כן, בכדור הבדולח ההוא...
נכון 110009
1. חשבתי שהצהרתי על זה בתגובה לכליל. ואת ההגדרה נתתי ישר בהתחלה.

2. אתה צודק, לפעמים אני באמת נהנה "להיות בלתי מובן". הפעם זה לא היה מקרה כזה, אבל, עדיין, נהנתי לראות קבוצה גדולה של בוגרי חדו"א/אינפי/קלקולוס שמנסים לצטט את החומר בלי לקרוא את השאלה.
נכון 110012
*בוגרי* חדו"א? אתה מדבר, בין השאר, על מר ו. - האיש ש*המציא* את החדו"א.
נכון 110013
ואני, לתומי, חשבתי שקראו לו מר נ.
נכון 110040
מר ל. חולק עליך.
כן, אני יודע, זכותו 110050
למרות שמר נ. פרסם את "המצאתו" רק ב-‏1687 בעוד שמר ל. פרסם כבר ב-‏1684. הרי שמר נ. המציא אותה כבר ב-‏1666 ומר ל. רק ב-‏1676.
כן, אני יודע, זכותו 110053
טוב, אבל זה רק מפני שמר נ. עמד על כתפי ענקים ומר ל. היה גמד.
עם כל הכבוד לנ. ול. 110157
שניהם לא היו יכולים להמציא את החדו''א בלי עזרתו של מר קו.
מר קו הקטן? 110190
גם לי 110109
אני מנסה להבין איך קרה שהויכוח התמשך כל-כך כשאני טוען שהטור לא מתכנס, ואתה (כך מתברר לאור הפרשנות החדשה) גם טוען שהוא לא מתכנס. אני, לפחות, הייתי חד-משמעי.

א. בתגובה 107956 כתבת "נתחיל בזה שהסכום כן מתאפס. להזכירך, הסכום הוא לא מ1 עד N כשN גדול כרצוננו, אלא מ1 עד אין סוף."
ב. בתגובה 108030 אתה טוען ש"הטור, לא מתכנס, והסכום, מה לעשות, עדיין אפס".

ובכן,
1. מה היתה הנקודה הרטורית שרצית להבהיר?
2. מהי ההגדרה הלא-סטנדרטית שלך לסכום של טור (תגובה 109995)?
אז אני אנסה לסכם 110396
0. אבל, זאת כל הנקודה, לא מדובר ב"פרשנות חדשה", ולא מדובר בחוסר עקביות. את התגובות לכליל (תגובה 108029) ואליך (תגובה 108030) כתבתי ב*תחילת הדיון* (שים לב לתאריכים, או, אפילו להסחה. אני לא עורך באייל, אני לא יכול לשנות תגובות בדיעבד‏1), ובהמשך הדיון הנחתי (ז"א, רציתי להניח, עד שהתברר לי שאי אפשר להמשיך תחת ההנחה הזו לאורך זמן) שאתם מגיבים לאחר ש*קראתם* את מה שאני כותב, ולא את מה שהמורה שלכם לחדו"א/אינפי לפני שלוש/עשר שנים חזה שאכתוב. אילו הייתם מגיבים באופן ישיר (שים לב כמה תגובות צריך לעבור בשביל לקבל תשובה לשאלה פשוטה, למשל תגובה 109137), זה היה הרבה יותר פשוט.

1. הנקודה הרטורית שרציתי להבהיר היא הסכנה שבטהרנות מתמטית, מהסוג לה מטיף ד. פר. צריך לזכור שבכול הנוגע לשיח מדעי, המתמטיקה היא השפה והכלי שמשמשים את המדען להעברת התיאוריות/מודלים בצורה מופשטת, קריאה, לוגית ועיקבית.

אם חוקר צפרדעים נוסע לאמזונס ומוצא צפרדע לא מוכרת לאנושות, הוא נותן לה שם, ואף טהרן לשונאי, אפילו לא הקיצוניים שבהם, לא יעז לבוא לחוקר ולומר לו "השם שנתת לו מופיע במילון, משמע הצפרדע לא קיימת" (מקסימום, אפשר לומר שהשם לו תואם את כללי השפה, אבל זה בהחלט לא אותו הדבר). אבל, כשפיזיקאי מגלה תיאוריה לא מוכרת לאנושות (נגיד, מכניקת קוונטים מעל משתנה רציף), ומוצא שהכלים המתמטיים העומדים לרשותו (נגיד L2) לא מצליחים לתאר את התופעה, אסור (לפי הטהרנים) לאותו מדען להמציא כלים חדשים, אלא שהמדען צריך להודות שהתופעה לא קיימת (צריך לשים לב, האמירה המקבילה לכך שהשם לא תואם את כללי השפה, היא משהו כמו התיאוריה שלך לא לוגית או עיקבית). אני מקווה שברור כמה הגישה הזאת מעוררת סלידה מבחינתי.

2. את ההגדרה נתתי במקום, אין לי כח להיכנס להגדרות מדוייקות, אבל אולי דוגמא תעזור להבין למה הכלי של "התכנסות" לא תמיד מוצלח.
נגיד שקבוצה של כימאים מנסה לחשב את המטען של היקום, ונגיד שהיקום בנוי מאטומי מימן פשוטים בלבד (ז"א אלקטרון ופרוטון), ושהיקום הוא אין סופי.
כימאי א' רושם את המטעם כסכום של האטומים, ז"א
Q_1=0+0+0+0+0+...
הטור השה מתכנס, והכל יפה ו"נכון".
השני, שם לב בהראשון התעלם מהמבנה הפנימי של האטומים, מה שיקשה לעשות חישובים אח"כ, ולכן, הוא רושם:
Q_2=(1-1)+(1-1)+(1-1)+(1-1)+(1-1)+(1-1)+...
גם זה, כמובן, מתכנס.
השלישי, פשוט פותח את הסוגריים, ומקבל:
Q_3=1-1+1-1+1-1+1-1+1-1+1-1+1-1+1-1+1-1+1-...
אופס, בעיה, מה עושים? האם יכול להיות שלאותו יקום שתואר ע"י שני הכימאים הראשונים יש מטען שונה מזה שתואר ע"י השלישי? כמובן שלא. שים לב שהמחזוריות היא לר מקרית, היא מחוייבת ע"י תנאי השאלה, ולכן, אפשר להשתמש בה לפיתרון, כמה שזה יכול להרגיז.

במילים אחרות, כשמדען פותר בעיה בעזרת המתמטיקה, הוא משתמש במתמטיקה, ולא ההיפך. כמו שאפשר לא לנרמל וקטורים, כמו שאפשר לסבול נרמול לדלתא של דיראק, כמו שאפשר להשתמש בלוגריתם‏2 כחלק מחישובים, כך אפשר לסכם טורים שאינם מתכנסים, בזהירות, ע"י מניפולציות שמוצדקות ע"י תנאי הבעיה.
----------------------------
1 אני מאמין שהעורכים באייל הגונים מכדי לעשות דבר שכזה, רציתי לומר שגם לו לא הייתי הגון, לא הייתי יכול לעשות את זה.
2 הבעיה היא, כמובן, שלוגריתם אפשר לעשות רק למספר טבעי, אבל לוגריתם של מכפלה הוא סכום של הלוגריתם של הכופלים, מה שיכול לגרור לא מעט בעיות.
אז אני אנסה לסכם 110403
המדען השלישי - פושע. תנאי הבעיה שלך מחייבים את המחזוריות? סמן את המחזוריות בסוגריים.
לא נכון 110468
גם תנאי הבעיה שלנו מחיבים מחזוריות, אפשר להכניס את הסוגריים בכל שלב, בדיוק כמו שעשיתי, וכמו שהמדען השלישי עשה.

נסה לחשוב על זה כך, עבור אותה מערכת, אם נרצה לבדוק משתנה אחר (למשל, מיקום מרכז המאסה), האם הסוגריים עדיין יעזרו לנו? בכל מקרה?
אז אני אנסה לסכם 110408
נראה שאתה לא מבין את מהות המתמטיקה. היא לא אוסף אקראי של כלים מהם ניתן לבחור חלק ולהתעלם מחלק, והיא גם לא סתם שפה נוחה יותר מעברית או אנגלית - אלא היא מסגרת לתיאור, עקבי ופורמלי, של כל המבנים הדדוקטיביים. אם עד היום לא נבנה מבנה כזה שמתאר את המודל הפיזיקלי שלך - מצא לך מתמטיקאי אקראי, ושכנע אותו לבנות אותו - לאט ובזהירות, כדי שלא תגיע למסקנות שהן פשוט לא נכונות (סותרות את עצמן או את הנחות המוצא שלך).

המדען השלישי שהחליט שהסכום הוא 0, בלי להגדיר למה הוא מתכוון כשהוא אומר "סכום" עשה שטות, מכיוון שבמקרה הטוב רק לא יהיה ברור (לא לו, ולא לאחרים) למה הוא מתכוון - ובמקרה הרע אי הבהירות הזו תוביל למסקנות שגויות, בלי שניתן יהיה לבאר את מקורן.

פירוש "מניפולציות שמוצדקות ע"י תנאי הבעיה" הוא *בדיוק* מה שהמדען השני עשה - הוסיף סוגריים במקומות המתאימים. זו לא "טהרנות מתמטית". זה תנאי הכרחי לשיח מדעי פרודקטיבי ובר ביקורת.
אני משוכנע שאני מבין. 110469
כמו שאמרתי, העקביות אכן מחייבת, אני שמרתי על עקביות, ולכן לא סתרתי את עצמי או את הנחות המוצא בשום שלב, ולכן אין כאן שום בעיה.

המדען השלישי לא החליט שהסכום הוא אפס, ולא עשה שטות, קרא שוב את הבעיה.

ה"מניפולציות שמוצדקות ע"י תנאי הבעיה" הוא גם מה שעשה המדען השלישי בבואו לפתור את הבעיה (הוא עבר להצגה של המדען השני, שים לב, זה *בדיוק* מה שעשיתי).

ואם כך הבנת את הטהרנות מתמטית, כנראה שכל התגובה למעלה בוזבזה עליך, חבל.
לסכם? אנחנו מוכרחים להתכנס קודם 110428
בתגובה 108030 כתבת ש"הטור, לא מתכנס, והסכום, מה לעשות, עדיין אפס", וזו כל הבעיה. לטור שאינו מתכנס אין בכלל סכום.
לא בגלל שאיזו גילדה סודית של מתמטיקאים התכנסה בספריה חשוכה והחליטה כך, אולי כדאי להאריך דיונים באייל שלא לצורך.
סכום של שני מספרים, מוגדר היטב. אפשר להשתמש בהגדרה הזו כדי להגדיר סכום של כל מספר סופי של אברים, אבל אם מותחים את ההגדרה גם לטורים אינסופיים (בלי לדרוש שהטור יתכנס) מאבדים תכונות חשובות של ה"סכום" (למשל, אסוציאטיביות). אפשר כמובן לחשוב על דרכים אחרות לשייך מספרים ממשיים לסדרות אינסופיות (ויש תחום מתמטי, Summability, העוסק בזה), אבל אם עושים את הדברים האלה בחוסר זהירות אפשר בקלות "להוכיח" דברים לא נכונים.

הפיזיקאי שלך, שרוצה לעבוד במכניקת הקוונטים ולא מעל מרחבי L2, יכול כמובן לעשות זאת. אבל הוא לא ירויח כלום מכך שיטען שהפונקציות שלו שייכות למרחב כזה, כשהן לא. זה יכול להיות יעיל כמדריך אינטואיטיבי, ותחומים רבים במתמטיקה צומחים בדיוק כך, מנסיון לבדוק עד כמה אפשר למתוח את תחום הנכונות של משפטים חשובים; אבל בלי הבדיקה הזהירה שהשיטות המתמטיות תקפות, אפשר -שוב- להגיע למסקנות לא נכונות בקלות רבה מדי.
אם יתברר שחלק משמעותי מהתאוריה ישים גם לפונקציות ההן, היה סמוך ובטוח שמתמטיקאים ינסו לבנות מסגרת עקבית גם עבורן.

2. לגבי סיכום של טורים לא מתכנסים: Q_1 ו- Q_2 הם בדיוק אותו טור. Q_3 הוא טור חדש, שאינו מתכנס. מי שכתב את הטור הזה טועה בכך שהוא רושם דבר אחד (שאין עליו מגבלות), ומתכוון לאחר (Q_2, מן הסתם). התוצאה היחידה שיכולה לצמוח מזה היא בלבול, כי מהטור הזה אפשר להסיק (למשל) שהיקום כולל פרוטון חופשי אחד, ועוד מספר בן מניה של אטומים - מה שיעמוד בניגוד לתצפיות.

3. אם נחזור (לרגע) לסיפור המקורי, ד. פר הראה שמשפט מתמטי מסויים (שמבטיח טור מתכנס כפתרון לבעיה) נותן טור שאינו מתכנס אם מפעילים אותו על "קלט" לא מתאים. במקרה כזה אי-אפשר לומר שהתוצאה דווקא כן מסתדרת בגלל שאפשר לעשות מניפולציה "שמוצדקת על-ידי תנאי הבעיה". אם יש מניפולציות כאלה, הן צריכות להוות חלק מהמשפט (אחרת, האסטרטגיה הטובה ביותר היא להניח שקיים משפט כללי יותר, ואם אין, כנראה שיש לזה סיבה טובה. אסטרטגיה אחרת, כמובן, היא לנסות לפתח את המשפט הכללי).

4. את ההערה על לוגריתמים ("אפשר לעשות רק למספר טבעי"?)לא הבנתי. גם אם התכוונת "למספר ממשי", אין שום בעיה להגדיר לוגריתם למספרים מרוכבים (אלא שהכלל הרגיל, שלוגריתם המכפלה יהיה שווה לסכום הלוגריתמים, יהיה נכון רק בתנאים מסויימים).

5. בעניין המורה שלי לאינפי, אינך יודע כמה הייתי צריך להתאפק כדי לא להשתמש בטיעון "Argumentum ad verecundiam". אבל נדמה לי שבמתמטיקה זה דווקא סביר (וכך אעשה להבא).
לא בהכרח 110475
א. נכון שהוא "לא ירויח כלום מכך שיטען שהפונקציות שלו שייכות למרחב כזה, כשהן לא", בגלל זה הוא פשוט לא יטען טענה כזו.

ב. "אם יתברר שחלק משמעותי מהתאוריה ישים גם לפונקציות ההן, היה סמוך ובטוח שמתמטיקאים ינסו לבנות מסגרת עקבית גם עבורן.", לא רק שאני סמוך ובטוח, זה כבר נעשה.

2. Q_3 הוא טור חדש, אבל תנאי הבעיה מאפשרים מעבר בטוח מQ_3 לQ_2, ולכן הם זהים. ז"א, את Q_3 אי אפשר לפתור ללא תנאי הבעיה, אבל בהינתן תנאי הבעיה, גם Q_3 פתיר.

3.
א. הסברתי באותו מקום שפתרתי למה המניפולציה מוצדקת ע"י תנאי הבעיה.
ב. מה שד. פר הראה הוא שמערכת שלא מקיימת את הנחות היסוד של המכניקה הקוונטית (המילטוניאן לא Complete), לא מקיימת את המסקנות מאותן הנחות.

4. לא, בכלל לא לזה התכוונתי, כידוע, בפיזיקה מודדים דברים אמתיים, ז"א, גדלים בעלי מימד (מטר, קילומטר, פיט, מייל, שניה, שעה, גרם, קילוגרם, אונקיה ...), ובמספר טיבעי התכוונתי למספר חסר ממדים.

5. את ההערה על המורה שלך לאינפי, לא הבנת. המורה שלך היה, מן הסתם, חכם, והסביר לך היטב מתי טורים מתכנסים ומתי לא, אבל, כשנתקלת בטיעון שלי, במקום לקרוא אותו עד הסוף, חזרת מהר מאד למה שלמדת, בגלל שזה הרבה יותר קל (ראה http://techst02.technion.ac.il/~sgiladb2/logic.htm#S...)
לא מתכנס - אז אין סכום 110485
א. מצוין. חבל שאתה נוהג אחרת (לטורים שלך יש "סכום-סמילי" גם כשלמעשה אין להם סכום).

ב. מצויין. זה נכון, אגב, גם לטורים שאינם מתכנסים.

2. הטור Q_2 מתכנס, בעוד ש- Q_3 אינו מתכנס. לכן הם אינם זהים. אני לא יודע מה זה "מעבר בטוח". כשאתה כותב ...+Q_3=1-1+1-1+1-1 וחושב על Q_3 כמספר, אתה מטעה את עצמך.
אם האנרגיה הקינטית של גוף שמשקלו 2 ק"ג היא 9, אפשר להסיק שמהירותו 3 מ"ש. לעומת זאת, למשוואה הריבועית v^2=9 יש שני פתרונות, אחד מהם שלילי. כל הלוליינות שבעולם לא תפסול את הפתרון הזה כפתרון לגיטימי למשוואה. רוצה דווקא את הפתרון החיובי? צרף את התנאי v>0 למערכת המשוואות שלך.
בלי זה, הפתרון השלילי נשאר שם.

3. שיהיה.

4. אדרבה. אז באמת אין בעיה.

5. קראתי את כל מה שכתבת. הטיעונים שלך קלים מאד להבנה, וגם מאד לא נכונים. אתה טועה בהבנת החומר הזה, ומבלבל את עצמך. אם יהיו שאלות נוספות, אשמח לעזור.
רק תיקון קטן: זה לא מה שלמדתי, אלא מה שלימדתי (מאה ועשרה סטודנטים).
לא מתכנס - אז אין סכום 110491
א.+ב. נו, שנחזור שוב על תגובה 110396 ?

2. אבל, אני לא חושב על Q_3 כעל מספר, אני לא מנתק אותו ממה שהוא מייצג, לא כל עוד לא ניתן לחשב אותו. את התנאי צירפתי במקום בו רשמתי את הסכום (ואתה הרי קראת את זה, וזה הרי קל להבנה, וגם לא נכון...).

4. טוב, אין לי כח להיכנס לזה, וזה לא המקום, אם תרצה, אוכל לנסח הסבר יותר מדוייק באי-מייל, אבל בקצרה, מדובר בפונקציה בעייתית, שכל שימוש בה לצרכי חישובים בפיזיקה צריך להיעשות בזהירות.

5. אם קראת את מה שכתבתי, והבנת את זה, איך יכולת לשאול את מה ששאלת (ב תגובה 110109)?
אני מניח, שלפני שלימדת, למדת, וכשלימדת, לימדת על סמך מה שלמדת, לכן עצם הלימוד לא ממש משנה, (אלא אם כן, פיתחת את זה לבד, בלי קשר לעובדה שזה פותח לפניך, ואם כן, כל הכבוד, וזה עדיין לא באמת משנה).
לא מתכנס - אז אין סכום 110677
א+ב. תחזור. ואני אחזור על תגובה 110428. יכול להיות כיף.

2. טוב מאד - באמת לא רצוי לחשוב על טור שאינו מתכנס כאילו יש לו סכום.

5. בתגובה 110109 שאלתי שלוש שאלות. את כולן - שווה בנפשך - אפשר לשאול גם אחרי שקראתי ואפילו *הבנתי* את כל מה שכתבת. הגדרה לא סטנדרטית לסכום של טור (שצריכה להיות איפשהו, כי הרי לכמה טורים לא מתכנסים יש סכום) לא קיבלתי; אלא אם הכוונה היא שסכום של טור הוא המספר היחיד מבין הגבולות החלקיים של סדרת הסכומים החלקיים, שאליו סמילי מתכוון.
לא מתכנס - אז אין סכום 110888
א+ב. ולהבדיל, אפשר לנסות ולהבין את מה שאמרתי, או, אם כל מה שאני אומר הוא באמת כל כך מטופש, אתה יכול לסיים את הדיון.

2. תודה, ראה סעיף למעלה, וסעיף למטה.

5. בתגובה 110109 כתבת:
"אני מנסה להבין איך קרה שהויכוח התמשך כל-כך כשאני טוען שהטור לא מתכנס, ואתה (כך מתברר לאור הפרשנות החדשה) גם טוען שהוא לא מתכנס." אם הבנת את כל מה שכתבתי, למה "כך מתברר לאור הפרשנות החדשה" (הרי, אם באמת *הבנת*, אז היית מבין שאין "פרשנות חדשה"), ולמה "אני מנסה להבין" (הרי אם באמת *הבנת*, למה אתה מנסה להבין)?

"אני, לפחות, הייתי חד-משמעי.", אם *הבנת*, אז למה ה"אני, לפחות"?

ושאלת "מהי ההגדרה הלא-סטנדרטית שלך לסכום של טור ..." אם *הבנת*, למה אתה שואל (הרי, את ההגדרה הסברתי בתגובה המקורית).

הכוונה היא כלל *לא* "סכום של טור הוא המספר היחיד מבין הגבולות החלקיים של סדרת הסכומים החלקיים, שאליו סמילי מתכוון", הכוונה היא אחרת, הייתי מפרט, או שולח אותך בחזרה לתגובותי (כאן, למעלה) אבל חבל על הזמן, אתה הרי *הבנת*, והטענה שלי *פשוטה*, ו*לא נכונה*, וכל מה שאכתוב יתפרש (משום מה) כפיקפוק בסמכותך כמורה למתמטיקה (למרות, שהטענות שלי הן *לא* במתמטיקה, אלא בפיזיקה).
התכנסות - פוסט מורטם 111074
אני לא מוצא דרך להגיב עניינית בלי לנתח את כל הפתיל, וזה נראה לי חסר טעם. בכל אופן, מצאתי הבדל אחד מהותי בין המלבנים שלי לשלך - כל המלבנים שלי עומדים ברשות עצמם. אתה, כמעט תמיד, מתייחס לתגובות קודמות, במפורש או ברמז. זה כמובן עניין של טעם - האם להאריך את התגובה רק כדי לוודא שהיא ברורה.
התוצאה היא מלבנים כמו תגובה 109200 ("האם מכאן אפשר להסיק ש...[טור מסויים מתכנס]?"). מה פירוש "מכאן"? האם זו התגובה הקודמת? השאלה הקודמת שלך? או השאלה המקורית שלך? ומה הקשר בין השאלה אם הטור ההוא מתכנס, לשאלה מאיפה אפשר להסיק את ההתכנסות הזו?
ההסבר בתגובה 109940 הוא שאותו "כאן" מסתורי הוא תגובה 109137, דהיינו - השאלה האם יש הבדל בין שתי סדרות מסויימות. במקרה הזה אין הבדל. מכאן אתה מסיק משהו שהוא נכון באופן די טריוויאלי, אבל מתכוון להסיק משהו אחר לגמרי (שאינו נכון): שהטור של תגובה 109756 מסתכם לאפס.
כשגיל עונה (תגובה 109226) לשאלת ה"האם מכאן אפשר להסיק" ב"לא, אי אפשר", אתה מסיק שהוא חושב שהטור הראשון לא מתכנס; וכשאני כותב שהטור כן מתכנס, אתה מסיק תגובה 109741 שהתגובה של גיל שגויה, וזו שלך נכונה (וגם שאני מדלג על שלבים - לא ברור לי למה). כל זאת, בזמן שהוא מתייחס לטור המקורי שלך (בתגובה 107956), שבאמת אינו מתכנס.
אולי כדאי בכל-זאת לבזבז עוד כמה מלים כדי לנסח את השאלה באופן חד-משמעי.
התכנסות - פוסט מורטם 111103
לדעתי התגובה (תגובה 109200) ברורה כשמש, אבל, כשמשהו לא ברור לי, אני לא ממהר לשלול אותו (שים לב, http://www.haayal.co.il/search.php3?SearchStr=%EC%E0... למעלה מ150 פעמים שהשתמשתי בצירוף "לא הבנתי") . שאלתי שאלה (תגובה 109137 "מה ההבדל בין הסדרה...") לאחר שלא קיבלתי תשובה, חזרתי על השאלה (תגובה 109186 "האם שתי הסדרות שהצגתי למעלה זהות?") לאחר ששוב לא קיבלתי תשובה, חזרתי על השאלה (תגובה 109192 "... ומה התשובה לשאלה ששאלתי?") ואז, לאחר שסוף סוף קיבלתי תשובה (תגובה 109193 "כן...") המשכתי לשאלה הבאה, תוך הסתמכות על התשובה הקודמת (ולכן, "האם מכאן...").

לא התכוונתי להסיק *רק* מתגובה 109200 את תגובה 107956 (אגב, כדאי לך לבדוק קישורים, או, לפחות לעשות קופי פייסט, יצא לך תגובה 109756, החלפת 9 ב7 זה דבר סביר לפיזיקאי, לא למתמטיקאי), התכוונתי לעבור עוד כמה שלבים, אבל אחרי שלכל שלב, שכמו שאמרת, כולם די טריוויאליים, האמת, הייתי בטוח שאני לא אצטרך לשאול את אותה שאלה שוב ושוב ושוב, ובטח שלא ציפיתי לקבל תשובה לא נכונה (תגובה 109226, ואין מה לעשות, היא לא נכונה) קיבלתי 3 תגובות לא רלונטיות (ובסוף, גם לא נכונות), פשוט נמאס לי.

כשגיל לא עונה לי (תגובה 109226, קלאסי) "ולשאלתך: לא", אני חושב (משום מה) שהוא עונה לי לשאלה ששאלתי.

כשאתה כותב שהטור כן מתכנס, אתה, לא נעים להגיד, סותר את הצהרותו של גיל (שטען שהטור לא מתכנס). בפסקה הבאה, אתה כותב "העניין הוא שהטור הראשון אינו שווה לטור ..." (תגובה 109632) וכאן נמצא הדילוג על השלבים (ז"א, שאלתי שאלה פשוטה, הטור שבהתחלה יופיע רק בשלב אחר).

אולי כדאי בכל-זאת לבזבז עוד כמה מילים *לשאול* כאשר שאלה או טענה לא מובנת, או נשמעת לא משמעית (רגע, אבל "קראתי את כל מה שכתבת. הטיעונים שלך קלים מאד להבנה, וגם מאד לא נכונים. אתה טועה בהבנת החומר הזה, ומבלבל את עצמך." תגובה 110485, קלאסיקה נוספת).
התכנסות - פוסט מורטם 111119
סמיילי, די!!!
ברצינות. יש לך מתמטיקאי שמוכן לענות לך על כל טור אם הוא מתכנס או לא. פשוט תשאל: הטור [...] מתכנס? ותקבל תשובה. מרוב ניסיונות להראות צודק וחכם, גם אי אפשר להבין כלום ממה שאתה כותב, וגם קשה לעקוב אחרי הדיון.
די!
הנה, יצאת "גדול". שוב אמרת לכולם שאי אפשר להבין אותך למרות שאתה נורא ברור ושהם סותרים את עצמם. אבל ההודעות שלך הן באמת בלתי קריאות, ואני עוקב אחרי הדיון הזה בדממה כבר כמה זמן, ואתה הופך דיון פשוט למין משהו מפותל ובלתי קריא. חבל.
התכנסות - פוסט מורטם 111122
שאלתי (למשל, תגובה 109091 ובשאר הדיון), והוא (עדיין?) לא ענה.

הנקודה היא שהתשובה שייתן לך מתמטיקאי, היא לא תמיד הנכונה, בעיקר לא כשאנחנו מדברים על תחום שאינו מתמטיקה.

אני לא מנסה להראות צודק וחכם, אני מנסה להסביר טענה מסויימת.

אני מצטער שהדיון נהפך למה שהוא נהפך, לא ברור לי מה עשיתי שהפך אותו לכזה (למעשה, אני די משוכנע שלא אני הגורם, אבל להבדיל מאחרים, אני מסוגל להודות שאני לא מבין הכל), אם אתה רוצה לעזור לי, תשלח לי הסבר בדוא"ל (באמת).
התכנסות - פוסט מורטם 111226
הקביעה אם טור מסויים מתכנס או לא היא בהחלט בתחום השיפוט של מתמטיקאי. אם התשובה שאתן אינה נכונה, אנא הסבר מדוע.
אני לא מדבר על המשמעויות הפיזיקליות של סכום הטור, או של העובדה שהוא לא מתכנס.

הערה טכנית:
מקובל להבחין בין סדרה (...,a0,a1,a2) לבין טור ...+a0+a1+a2. אומרים שהסדרה מתכנסת אם יש לה גבול‏1. אומרים שהטור מתכנס, אם לסדרת הסכומים החלקיים יש גבול. במקרה זה, סכום הטור הוא הגבול של סדרת הסכומים החלקיים. אלו ההגדרות שבהן השתמשתי עד כה, וכך אעשה גם כאן.

בנסיון להחזיר את הדיון הזה אל הפסים, אני אענה שוב על כל השאלות הקונקרטיות שעלו עד כה.

1. לתגובה 109091 (האם הסדרה (...,0,0,0) מתכנסת?): כן. גם הטור ...+0+0+0 מתכנס, וסכומו אפס. חשבתי שזו שאלה רטורית.

2. תגובה 109118 - מה ההבדל בין הסדרה
S1={0,0,0,0,0,...}
לסידרה:
S2={1/2-1+1/2+0,1/2-1+1/2+0,1/2-1+1/2+0,1/2-1+1/2+0,1/2-1+1/2+0,1/2-1+1/2+0,...}
תשובה: אין שום הבדל. זו אותה סדרה בדיוק.

3. נגדיר a_q כמקודם,
a_{1,5,9,13,17,21,...} = 1/2
a_{2,6,10,14,18,22,...}= -1
a_{3,7,11,15,19,23,...} = 1/2
a_{4,8,12,16,20,24,...} = 0
תגובה 109137 שואלת מה ההבדל בין הסדרה
S2={1/2-1+1/2+0,1/2-1+1/2+0,1/2-1+1/2+0,1/2-1+1/2+0,1/2-1+1/2+0,1/2-1+1/2+0,...}
לסדרה:
S3={sum(q=1,4)[a_q],sum(q=1,4)[a_q],sum(q=1,4)[a_q],sum(q=1,4)[a_q],sum(q=1,4)[a_q],sum(q=1,4)[a_q],sum(q=1,4)[a_q],...}
תשובה: אין הבדל, זו אותה סדרה בדיוק.

4. לתגובה 109200, האם
sum(m=0,infinity)[sum(q=1,4)[a_{m*4+q}]]=0 ?
תשובה: כן. זהו הטור שפגשנו בסעיף 1.

5. שאלה שהיתה צריכה להשאל, אבל אינה מופיעה במפורש: האם הטור ...+a1+a2+a3+a4 מתכנס?
תשובה: לא. ראה תגובה 109948 לפירוט.
בפרט, ההצהרה בתגובה 108030 שהטור לא מתכנס "והסכום, מה לעשות, עדיין אפס", אינה נכונה (בחציה השני).

1 t הוא גבול של הסדרה אם לכל אפסילון גדול מאפס קיים N כך שאם n>N, אז |a_n-t| קטן מאפסילון.
יופי, אפשר לסכם 111330
"הקביעה אם טור מסויים מתכנס או לא היא בהחלט בתחום השיפוט של מתמטיקאי. אם התשובה שאתן אינה נכונה, אנא הסבר מדוע.", מקובל בהחלט, וזו הסיבה שכתבתי את תגובה 108030 ושים לב לתחילת התגובה "הטור, לא מתכנס..." (ולא, אין בהמשך מילת שלילה).

"אני לא מדבר על המשמעויות הפיזיקליות של סכום הטור, או של העובדה שהוא לא מתכנס.", וזה ההבדל ביננו, אני *כן* מדבר על המשמעויות הפיזיקליות, הגודל שהסכום מייצג.

1 + 2 + 3 + 4. תודה, זה כאב לענות לעניין?

5. השאלה לא נשאלה משום שאני יודע את התשובה, כאמור, כאשר מתעלמים מהתנאים הפיזיקלים על המערכת, אי אפשר לחשב את הסכום. השאלה היא למה לוותר על תנאים פיזיקלים? אם הייתם עונים קצת יותר לעניין, היינו מגיעים גם לזה (למרות שהגענו לזה ישר בהתחלה, בתגובה ה*ראשונה* שלי).

ההצהרה בתגובה 108030 שהטור לא מתכנס "והסכום, מה לעשות, עדיין אפס", נכונה (על שני חלקיה), משום שהסכום לא עומד בפני עצמו, אלא מייצג גודל פיזיקלי (בדיוק כמו סכום המטענים שבתגובה 110396).
יופי, אפשר לסכם 111345
על משפט כמו ''זה כאב לענות לעניין'', אני אישית לא הייתי טורח לענות לעניין.
יופי, אפשר לסכם 111398
אל תטרח, במילא, לא תהיה הראשון בדיון הזה שלא טורח.
יופי, אפשר לסכם 111403
עוד דוגמא נאצלת.

אני לא נהנה להקניט (באמת שלא), אבל בין אם עוזי טורח או לא, סגנון הכתיבה שלך לא עושה שום חשק לטרוח. הוא לא טורח? אז אל תדון עמו בשום נושא. משפטים סרקסטיים ופוגעים לא יובילו את הדיון לשום מקום.
יופי, אפשר לסכם 111432
השתמשתי במילים שלך. אתה הראשון שהתשמש בשורש ט.ר.ח. (תגובה 111345). אם אתה לא נהנה להקניט, על תקניט, אני חושב שזו צביעות לטעון שאני מאלץ אותך להקניט, בזמן שאתה מתפרץ לדיון תוך כדי השתלחות בי. בכלל, לא יחסתי טרחה לעוזי, אתה יחסת לו (שוב תגובה 111345). ואם יש לך ביקורת *עניינית* על סגנון הכתיבה שלי, פרט באופן ענייני (ואגב, לדעתי, עדיף בדוא"ל), אני חושב שבשום מקום לא הגבתי בצורה שלא הלמה את המוגב.
יופי, אפשר לסכם 111578
הצהרה אישית מפי אלמוני זה לא אוקסימורון?
יופי, אפשר לסכם 111549
1. לאחר שהסברתי בפעם הראשונה שהטור המקורי אינו מתכנס (ולכן אין לו סכום), המשכת את הדיון עם אחרים. לכן לא מצאתי לנכון לענות על ארבע השאלות ההן קודם לכן. לזכותם של המגיבים האחרים אני רוצה לציין שחלק מן השאלות שלך (למשל: "האם הסדרה 0,0,0,0,0... מתכנסת?") נשמעות רטוריות, ולא לגמרי ברור שיש צורך לענות עליהן.

2. המתמטיקה היא אובייקטיבית. המספרים שלה מסתכמים באותו אופן, וזה לא משנה אם מסכמים את האבקנים בתפרחת של שושנים או את החוב הלאומי של ישראל. גם הטורים שלה מסתכמים לאותם המספרים בכל פעם שניגשים אליהם; הם לא משנים את דעתם לפי נטיות ליבו של השואל.

הטור שלנו אינו מתכנס, ולכן *אין לו* סכום. אם כך, מדוע אתה חוזר ואומר שסכומו אפס? בגלל "התנאים הפיזיקליים". במלים אחרות, (המלים שלי, אבל הנימוק שלך): הסכום הוא אפס *לא בגלל משהו שקשור בטור*, אלא בגלל שאנחנו יודעים את התשובה (אפס) מראש. אני לא יכול לקבל נימוק כזה.

ד.פר הציע (תגובה 107580) דוגמא שבה החישוב הסטנדרטי (פיתוח של פונקציה לטור פורייה, פחות או יותר) מניב טור שאינו מתכנס. פתרונות אפשריים:
א. לטעון שבמקרה שלנו לא קיים פיתוח כזה - הפתרון הזה קביל, אבל אני חושד שאינו נכון (פיתוח פורייה קיים תחת תנאים חלשים למדי).
ב. להסביר שבגלל תנאי השאלה, הטור הנכון אינו הטור sum{a_q} המוכר לנו (ושאינו מתכנס), אלא הטור שאבריו מקובצים ברביעיות (ושכן מתכנס, לאפס). אני לא רואה בתנאים הפיזיקליים שום דבר שמצדיק את הטענה הזו (פרט לכך שהיינו מאד רוצים לקבל אפס כתוצאה), אבל זה עדיין טיעון לגיטימי.

הפתרון שבחרת:
ג. במקרה הזה הטור דווקא כן מתכנס - זה לא עובד. הוא לא.

הפתרון הנכון:
ד. פיתוח פורייה אינו חייב להתכנס נקודתית.

3. אם f היא פונקציה אינטגרבילית-בריבוע (כלומר L2) בקטע [0,2Pi], אז קיים לה פיתוח פורייה‏1. "קיים פיתוח פורייה" פירושו רק שהאינטגרלים שמגדירים את מקדמי הפיתוח, מתכנסים - אבל זה לא אומר דבר על התכנסות הטור לפונקציה המקורית. לדוגמא, Kolomogoroff בנה בשנות העשרים פונקציה שטור פורייה שלה אינו מתכנס אפילו בנקודה אחת.
התאוריה מבטיחה (משפט Fejer) שלכל נקודה t שבה הפונקציה f רציפה, טור פורייה ב-t "מתכנס במובן Cesaro" לערך (f(t (שהוא הערך ה"נכון"). "מתכנס במובן Cesaro" פירושו שסדרת הממוצעים של סדרת הסכומים החלקיים, מתכנסת.
במקרה שלנו, הטור (שאין לו סכום) מתכנס במובן Cesaro לאפס, כפי שציינתי בתגובה 107965.

1 פיתוח ש"מציג" את הפונקציה כסכום אינסופי של סינוסים וקוסינוסים.
יופי, אפשר לסכם 111555
1. ועדיין, כאשר אחד מהמגיבים האחרים טעה, אף אחד מהמגיבים (כולל אותך) לא תיקן אותו, וכשאני העזתי לתקן אותו, התנפלת עלי.

2. אני לא טוען ש"הסכום הוא אפס *לא בגלל משהו שקשור בטור*, אלא בגלל שאנחנו יודעים את התשובה (אפס) מראש", אני טוען ש"הסכום הוא אפס *לא בגלל משהו שקשור בטור*, אלא בגלל שאנחנו יודעים את על תנאים נוספים על המערכת שלא נכללים ביצוגה המתמטי על ידי הטור".

הפיתרון שבחרתי אינו ג., אלא דווקא ה. (מדובר באופרטור לא שלם). הויכוח על הטור הוא, מבחינתי, ויכוח צדדי שמתקיים רק לבחירה בערכים מסויימים של x.

3. לא הבנתי, אבל זה נראה דומה להסבר שלי על הפונקציה (exp(ipx במקום אחר.
יופי, אפשר לסכם 111629
1. אני מניח שמדובר בתגובה 109226 של גיל. הטעות היחידה שלו שם היא, אם יורשה לי, שהוא לא עובד אצלך. הוא מטפל בעניין המקורי, ולא בשאלות המנחות שאתה שואל.

בפסקה השניה הוא כותב "ולשאלתך: לא, מכאן כמובן שאי אפשר להסיק שהוא מתכנס", ומתכוון לטור המקורי. כדי למנוע אי-הבנות, הוא כותב במפורש: "'הוכחת' שהטור ...+(0.5+1-1-0.5)+(0.5+1-1-0.5) מתכנס. זה לא משנה את העובדה ש- ...5+1-1-0.5+0.5+1-1-0.5+ לא מתכנס." הטור החדש שלך (זה שבתגובה 190200) אינו מוזכר שם.

ה"התנפלות" שלי (תגובה 109632?) היא שאני לא מרשה לדבר על סכום של טורים לא מתכנסים. זה לא עומד להשתנות.

2. הוא אשר אמרתי. ה"סכום" הוא אפס בגלל שזו התוצאה שאנחנו רוצים לקבל. אתה חופשי לומר שהתוצאה היא אפס כי כך צריך להיות, אבל מה אתה רוצה מהטור המסכן, שאינו מתכנס בכלל? אין לו סכום, ודי.

הפתרון שבחרת, ושהביא אותנו עד הלום, הוא פתרון ג' שלי - זה מה שכתוב בשורה הראשונה של תגובה 107956. אם אתה יכול להצדיק את השוויון הראשון בשורה השביעית של התגובה ההיא, אשמח לשמוע איך.

3. חבל - כי זה מסביר מדוע התשובה הנכונה היא ד'.
יופי, אפשר לסכם 111686
1. טוב, אז עכשיו אני לא מבין, אם גיל לא טעה, אז לאיזה *שאלה* מהשאלות ששאלתי יש תשובה שלילית?

2. לא, לא, לא, לא, לא.
הסכום הוא לא אפס בגלל "שזו התוצאה שאנחנו רוצים לקבל", הסכום הוא אפס בגלל שיש תנאי פיזיקלי שלא נכלל בהפשטה המתמטית.
קח את הדוגמא שאתה נתת (תגובה 110485 סעיף 2 פיסקה שניה)
בקיצור, ובשינוי קצר, נתון גוף בתנועה, הצלחנו לחשב את האנרגיה הקינטית שלו, ומכאן, כשננסה למצוא את המהירות שלו, נגלה שמלבד הערך המוחלט, אי אפשר למצוא את הכיוון.
ד. פר היה עוצר ואומר משהו כמו "אי אפשר לחשב את כיוונו של הגוף -> הפיזיקה הניוטונית לא מטפלת במערכות רב כיווניות".
אני , בתגובה, הייתי אומר משהו כמו "המשוואה לא פתירה, אבל לגוף יש ויש כיוון תנועה".
אתה היית עוצר ואומר משהו כמו "המשוואה לא פתירה באופן יחיד -> ואתה טוען שאפשר למצוא את כיוון התנועה -> כרטיס אדום (צהוב שני)"
אני הייתי מגיב ואומר משהו כמו "בגלל שאנחנו יודעים שהפשטת האנרגיה של המערכת (כמו כל הפשטה) לא כוללת בתוכה את כל העובדות הידועות לנו על המערכת, אנחנו פונים להפשטה אחרת (למשל, תנע, או מקום) ואז מוצאים את כיוון תנועתו של הגוף."
וגיל היה אומר משהו כמו "זה לא מסובך, זה מתמטיקה, נראה שאתה לא מבין את מהות המתמטיקה, למשוואה יש אין סוף פיתרונות -> הגוף נע באין סוף כיוונים".
והאייל האלמוני היה אומר משהו כמו "תפסיק להקניט, אם מתמטיקאי אומר לך שהמשוואה לא פתירה, המשוואה לא פתירה"
והשאר כתוב בספר תולדות האייל.

את השיווין הראשון אני יכול להצדיק, ההצדקה שלי בנויה על ההצדקה שנתתי בהתחלה "לכל איבר שנמצא בסכום גם שכניו לרבעיה נמצאים בסכום" תגובה 108030, כמו במקרה של מערכת המטענים. עמדתי להסביר גם למה, אבל בהתחשב בקהל, ובמדיום, אני חושב שהסברים ינתנו למתעניינים בדא"ל.

3. פיתרון ד. לא עוזר, הבעיה היא לא התכנסות טורי פורייה, הבעיה היא שמערכת שמיוצגת ע"י מספר בן מניה של מצבים באופן שלם ללא ניוון, לא יכולה להיות מיוצגת גם ע"י עוצמת הרצף של מצבים, מפני שמדובר במספר "גדול" יותר. הפיתרון לזה הוא, לדעתי, שלא מדובר באותה מערכת.
צר לי כי אני מתערב: 111725
2. האנלוגיה שלך אינה תקיפה - במקרה של האנרגיה הקינטית, וממנה המהירות, מדובר בחוסר-מידע מובהק על פונצית המצב (במקרה הקלאסי, וקטור דינמי.) אנו יודעים מן האנרגיה הקינטית את גודל מהירותו, אבל לא את כיוונה.
במקרה הקוונטי עליו מדובר, אנו יודעים בדיוק מהי "פונצית המצב," והטענה שלך כי היא פיסיקלית (שהאינטגרל מתכנס, ולכן ניתן לנרמל ל-‏1), היא מידע מיותר, ובמקרה זה _סותר_ את המידע הקודם שלנו - אנו _יודעים_ כי לא ניתן לנרמל גל הרמוני.
נראה לי שהתבלבלת 111727
2. אין קשר לחישוב אינטגרל, יש כאן מכפלה בין שני מצבים אורטוגונליים (כביכול), והסכום, שמיוצג ע"י הטור המפורסם, לא מכיל את כל המידע, כמו למשל הסימטריות של המערכת. לא מדובר כלל על נירמול גל הרמוני (זה דיון אחר, וכבר הסברתי, וחזרתי והסברתי, שניתן לנרמל גל הרמוני, ראה את הדיון שמתחיל בתגובה 109403 או בתגובה 109403), אלא על מכפלת מצבי מקום שונים בבור פוטנציאל סופי.
כנראה שאני ממש מבולבל. 111728
חשבתי שמדובר באותו הדיון. לא משנה.
הטור מכיל את כל המידע - זה כל העניין בכל הניסוחים האנליטיים האלה של הפיסיקה. מכניסים את כל המידע (כולל סימטריות) ללגרנג'יאן או להמילטוניאן, (או לטנזור המטרי), ופותרים.
אם הניסוח שלך לא מכיל, אנליטית, את כל המידע, אז צריך לזרוק אותו ולקנות חדש במכולת.
כנראה שאני ממש מבולבל. 111730
לא, הטור הוא לא אחד מהניסוחים האנליטיים של הפיזיקה, אלא שיטת חישוב של *מכפלת מצבים* ע"י מעבר לבסיס מסויים. ובכלל, בכל אחד מהניסוחים של הפיזיקה אפשר להגיע לבעיה בלתי פתירה מתמטית, החוכמה היא להגיע לבעיה כן פתירה, ולהבין שאם הגעת לבעיה בלתי פתירה, זה לא אומר שהניסוח של הפיזיקה לא נכון (בסגנון ד. פר) או שהבעיה בלתי פתירה כלל (בסגנון גיל).

תן לי בעיה כלשהיא בפיזיקה (תחת איזה תיאוריה שתבחר), ואראה לך איך אני מעביר אותה לבסיס בו היא בלתי פתירה!
כנראה שאני ממש מבולבל. 111732
אוקיי, ככל שהדיון הזה מתמשך, פחות ופחות מובן לי מאיפה הוא התחיל, מה המטרה שלו, למה, כמה, ואמה. נראה לי שאמשיך במדיניותי (הלחלוטין-לא-עקבית) של להתעלם מן הדיון הזה, ולקוות שהוא ידעך, אט אט, אל תהום הנשייה, ולאחריו תוכלו, אתה ועוזי, להפנות את האינטלקטים המרשימים שלכם לבעיות אחרת.
יופי, אפשר לסכם 111889
1. התאוריה הנוכחית שלי (כפרשן לענייני גיל) היא כדלקמן:
בראשית, הצהרת שטור x אינו מתכנס אבל יש לו סכום.
אחר-כך שאלת האם טור y זהה לטור z. כשהצלחת לסחוט את האישור שהם אכן זהים, שאלת האם מכאן אפשר להסיק שטור z מתכנס. תשובתו של גיל: "לא, אי-אפשר. הוכחת שהטור y מתכנס. מזה לא נובע ש- x מתכנס". שתי הטענות האחרונות - נכונות.

2. את הכרטיס הצהוב (השני) היית מקבל על הצהרה דומה למקרה של הטורים: "המשוואה לא פתירה, אבל יש לה פתרון יחיד".

אנא פרט בקשר לנימוק שעם כל איבר בסכום, מסכמים גם את שכניו לרביעיה. הרי על-פניו זה נכון גם לטור שבו אין מקבצים את האיברים, ואז (כפי שכבר הסכמנו) הטור אינו מתכנס.
האם יש משהו בתנאי הבעיה שמאפשר לקבץ את האיברים ברביעיות דווקא, ולא בחמישיות או עשיריות? הרי אם מקבצים את האיברים בחמישיות, הטור המתקבל שוב לא מתכנס.
אם אין בבעיה משהו שמצדיק את החלוקה דווקא לרביעיות, אני שוב חושד שהסיבה היחידה לחלוקה הזו היא שכך מקבלים את התוצאה הרצויה.

3. כלומר, אתה טוען שהטור אינו *צריך* להסתכם לאפס. הצעתי את האפשרות הזו קודם לכן.
יופי, אפשר לסכם 111903
1. איך שלא הופכים את הקערה, שאלתי שאלה, גיל ענה שהתשובה שלילית, אתה טוען שהתשובה חיובית, מכאן (מהמשפט עד כה) אפשר להסיק ש:
א. גיל טעה (כשאמר שהתשובה שלילית).
ב. אתה טועה (כשאמרת שהתשובה חיובית).
ג. שניכם טועים (והתשובה היא 3.4).
ד. התשובה היא סופרפוזיציה של כן ולא.

2. לא, ההצהרה על הסכום היא הצהרה הצהרה על מה שהסכום מייצג, ולכן הצהרה נכונה.

בו נחזור לדוגמת יקום אטומי-המימן, ונוסיף ליקום פרוטון אחד, ז"א, עכשיו המטען הוא 1 (לכן, הסכום הוא 1) אבל הסכום נראה זהה, הנקודה היא שעכשיו רק לאיבר השני ומעלה יש שכן מובטח.

הסבר למה יש שכנים מובטחים אני לא יכול לתת כאן, אבל:
א. בהינתן הסבר כזה, האם אפשר לסכם את הדיון? ז"א האם כל הדיון הוא על כך שאתם חולקים על קיומו של הסבר כזה? ואם כן, למה אף אחד לא שאל אותי על הסבר כזה (שהצהרתי על קיומו בתחילת הדיון) עד עכשיו, לא כאן, ולא בדוא"ל?

ב. אם זה בכל זאת מעניין אותך, או כל קורא אחר, אני אנסה לכתוב משהו ולשלוח לכל מבקש בדוא"ל.

3. אני טוען שאין לי "תוצאה רצויה", יכול להיות שעבור הערכים הרציונלים של x (ז"א החלוקות הרציונליות בpi) אפשר להוכיח שהסכום מתאפס. אבל זה לאו דווקא ה"תוצאה הרצויה".
יופי, אפשר לסכם 112117
1. המסקנה הנכונה (לדעתי) היא שגיל לא ענה לשאלה ששאלת, אלא לשאלה אחרת (טבעית יותר - האם הטור המקורי מתכנס).

2. אני לא חולק על קיומו של הסבר לסיכום בקבוצות; אפשר לסכם איך שרוצים, ואז (הפתעה) התוצאה תלויה בשיטת הסיכום.

אני לא מעוניין בהסבר המלא על השכנים, אלא רק בפרט אחד ממנו: האם משהו בתנאים הפיזיקליים של השאלה מסביר מדוע אתה מקבץ את האיברים ברביעיות ולא בחמישיות?
יופי, אפשר לסכם 112374
1. אז למה הוא כתב *במפורש* "ולשאלתך: ..."? הרי, אם הוא עונה לשאלה אחרת, לא נכון היה לכתוב "ולשאלה אחרת: ..."?

2. הקיבוץ יכול להיות, לדעתי, בכל מספר טבעי קבוע. גם חמישיות עובד, אבל אז הגענו שוב לבעיה בילתי פתירה. לעומת זאת, אם הייתי לוקח נקודות אחרות, למשל חמישית פאי ושלוש חמישיות פאי, הייתי מקבל גם מחזוריות של 5. אגב, אם הייתי לוקח נקודות לא רציונליות (למשל, 1 ו 2) הייתי מקבל משהו ללא שום מחזור, ובשביל להתמודד עם זה הייתי צריך לשאול מתמטיקאי. האם עכשיו צ'זרו עוזר, או שמדובר במשהו בלתי בכל צורה?
יופי, אפשר לסכם 112395
יכונסו הטורים, וישא"ק!
סיכמנו?
וישא"ק? 112399
תגובה 52141
  וישא"ק? • האייל האלמוני
  וישא"ק? • האייל האלמוני
  עברי, דבר עברית • סמילי
  יופי, אפשר לסכם • עוזי ו.
  יופי, אפשר לסכם • סמילי
  יופי, אפשר לסכם • עוזי ו.
  יופי, אפשר לסכם • סמילי
  יופי, אפשר לסכם • עוזי ו.
  יופי, אפשר לסכם • סמילי
  יופי, אפשר לסכם • עוזי ו.
  יופי, אפשר לסכם • סמילי
  סיכום הדברים • עוזי ו.
  סיכום הדברים • סמילי
  קפיצה קטנה: (מצטער שאני נאלץ לחזור על עצמי) • כליל החורש נאורי
  להזכירך, לא הוספתי את הפסוק האסור • סמילי
  להזכירך, לא הוספתי את הפסוק האסור • כליל החורש נאורי
  שים לב לכותרת למעלה • סמילי
  שים לב לכותרת למעלה • כליל החורש נאורי
  בדקתי • סמילי
  בדקתי • כליל החורש נאורי
  בדקתי • סמילי
  בדקתי • כליל החורש נאורי
  בדקתי • סמילי
  בדקתי • כליל החורש נאורי
  בדקתי • סמילי
  בדקתי • כליל החורש נאורי
  כן • סמילי
  כן • כליל החורש נאורי
  אהבתי את הפתיחה • סמילי
  הפתיחה לשרותך. (לא מתחרז אם הוגים נכון) • כליל החורש נאורי
  הפתיחה לשרותך. (לא מתחרז אם הוגים נכון) • סמילי
  הפתיחה לשרותך. (לא מתחרז אם הוגים נכון) • כליל החורש נאורי
  הפתיחה לשרותך. (לא מתחרז אם הוגים נכון) • סמילי
  סיכום הדברים • עוזי ו.
  אהה • סמילי
  קבלו את התנצלותי • האלמוני המקורי (מהדיון ההוא)
  מצטער, • סמילי
  טוב, אם אתה רוצה • ד. פר
  טוב, אם אתה רוצה • סמילי
  טוב, אם אתה רוצה • ד. פר
  טוב, אם אתה רוצה • סמילי
  טוב, אם אתה רוצה • ד. פר
  אוף, נו! • כליל החורש נאורי
  לא הגודל. הטכניקה! • ד. פר
  לא הגודל. הטכניקה! • כליל החורש נאורי
  לא הגודל. הטכניקה! • ד. פר
  לא הגודל. הטכניקה! • כליל החורש נאורי
  איזו מן פונקצית גל זאת? • עוזי ו.
  איזו מן פונקצית גל זאת? • ד. פר
  ותוספת קטנה • ד. פר
  איזו מן פונקצית גל זאת? • סמילי
  לא הסברתי את זה‏1? • סמילי
  דווקא L2 ! • עוזי ו.
  הסברתי את זה, לא? • סמילי
  לא נראה לי • עוזי ו.
  לא נראה לי • סמילי
  אנסה לסכם (אני בטח מפספס את ציר הדיון, לא משנה) • כליל החורש נאורי
  ואולי, להפך • סמילי
  ואולי, להפך • כליל החורש נאורי
  להפך • סמילי
  להפך • כליל החורש נאורי
  אה, הבנתי, • סמילי
  להפך • ליאור גולגר
  נכון, • סמילי
  לא נראה לי • עוזי ו.
  לא נראה לי • סמילי
  הדיוט קופץ בלי ראש • שוטה הכפר הגלובלי
  מצטער על האיחור, • סמילי
  שאלה • עוזי ו.
  זה שני דברים שונים • סמילי
  אה. • כליל החורש נאורי
  אה. • סמילי

חזרה לעמוד הראשי

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים