בתשובה לאלון עמית, 27/04/05 0:49
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296273
מאיפה באמת השתרש הביטוי "חבורת" מנדלברוט? אני זוכר שתהיתי עליו בעצמי, והנה אני משתמש בו בלי לשים לב (אולי כי אני לא שולט לגמרי בהגדרה הפורמלית שלה). האם היא כן מהווה חבורה, או שזה פשוט תרגום קלוקל של Set של אנשים שלא בקיאים במינוחים מתמטיים?
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296290
לא שמעתי את הביטוי "חבורת מנדלברוט" מעודי, אז קשה לי לענות על השאלה. אתה בטוח שהוא השתרש? (קבוצת מנדלברוט לא מהווה חבורה בשום מובן שאני יכול לחשוב עליו).
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296296
על פי מבחן גוגל - כן. 10 מופעים ל"חבורת מנדלברוט" ורק 9 ל"קבוצת מנדלברוט". אחד המופעים היה בכיתוב התמונה של קבוצת מנדלברוט בויקיפדיה העברית (תוקן כעת).
מבחן גוגל 296317
Mandelbrot Group: 28

Mandelbrot Set: 97,000

מבחן גוגל 296323
תוכל בבקשה להרחיב קצת על המובנים והתרגומים.

group = חבורה?
מבחן גוגל 296327
חבורה (group) היא מבנה אלגברי שבו יש אוסף של איברים (קבוצה) עם פעולה ("חיבור" או "כפל"), מתקיים חוק הקיבוץ, יש איבר נייטרלי, ולכל איבר יש הופכי. קבוצה (set) זה אותו דבר בלי כל החלק המעניין (אין פעולה, אין קיבוץ‏1, אין נייטרלי, אין הופכי).

1 עד פה זה נשמע כמו משהו של הצופים.
מבחן גוגל 296328
(ודרך אגב, דובי: אני מתנצל על כל זה. זכור את תגובה 295871).
מבחן גוגל 296364
אין בעיה. אני דווקא נהנה. ממה שאני מבין, לפחות.

(המממ... זכור את תגובה 295871 לקודשו... אגב, שמת לב שאוטוטו אנחנו מגיעים ל-‏300,000 תגובות?)
מבחן גוגל 296375
שמתי. הטרגדיה היא שבערך אחוז מהן שלי.
מבחן גוגל 296332
תודה. פשוט בעברית לא מתמטית קבוצה היא group, אם איני טועה.
מבחן גוגל 296335
אני חושב שאתה לא מדייק, אבל מזמן שכחתי עברית לא מתמטית.
מבחן גוגל 296401
לא יודע אם הצופים מתאימים כאן. אבל בחלק מהשיעורים בתורת החבורות נהגתי לחשוב שאדם מבחוץ שהיה נכנס לשם היה מניח שמדובר בסוציולוגיה: חבורות ימניות, חבורות שמאליות, אידיאלים... אפילו לפילטרים אפשר למצוא איזה הסבר כזה (דחוק, אמנם).
מבחן גוגל 296476
תגובה 234820.
מבחן גוגל 296336
לא באנגלית - בעברית. כאמור, לדעתי הטעות נובעת מתרגום שגוי של המילה Set, כי הדיוטים לא בהכרח מבדילים בין "חבורה" ו"קבוצה".
מבחן גוגל 296337
הבנתי, הבנתי, נו... (וזה ''הדיוטות'').
מבחן גוגל 296403
לא אתפלא אם הטעות הזאת התחילה מתרגום של ורדה ויזלטיר לאיזה ספר בתורת הגשטלט שהופיע בו פרק על תורת החבורות שתרגום כתורת הקבוצות. לקח לי כמה דקות להתאפס על הטעות ולהתחיל לקלוט.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296489
אני נתקלתי ב"חבורת מנדלברוט" הרבה פעמים, וזה אכן תרגום קלוקל של Set. מתרגמים יודעים להתייעץ עם מומחה לבוטניקה כשהם צריכים לתרגם שמות של צמחים, ואם היו יודעים להכליל את השיטה הזו לתחומים אחרים הם היו יכולים לחסוך הרבה שגיאות מביכות.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296627
שנתפשר על "כנופיית מנדלברוט"?
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296653
חבורת מנדלברוט זה החבר'ה מהפקולטה למתמטיקה בייל ששותים קפה ואוכלים עוגיות שקדים?
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296717
תה, בארבע.
עם חלב, או עם לימון? 296900
עם חלב, או עם לימון? 296919
עם נענע, אלא מה?
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296704
לא הבנתי מה הבעיה עם "חבורת מנדלברוט". הרי יש כזו קבוצה, לא? ויש לה איברים, לא? אז מה הבעיה להגדיר איזה פעולת כפל בין האברים שלה? יש בכלל קבוצה שהיא לא חבורה (עד כדי הגדרת פעולת כפל)?
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296705
חוץ מכפל יש עוד כמה תבלינים שבלעדיהם לא תיתכן חבורה, אבל אשאיר את התיאור לטבח הראשי, אלון.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296707
לא נכון. כל מה שצריך זה פעולת כפל. אמנם פעולת הכפל צריכה לקיים תנאים מסויימים, אבל עבור כל קבוצה שהיא ניתן להגדיר כזו פעולה, בלי להוסיף או לגרוע מהקבוצה.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296733
לא בדיוק, צריך גם 0 ו-‏1 (אני רק לא זוכר כרגע איך הם מוגדרים בהכללה).
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296735
צריך איבר אדיש בודד, והוא מוגדר כחלק מהגדרת הפעולה.
פצע ומכה טריה 296706
תגובה 296327

אולי אין בעיה להגדיר כזאת פעולה וכאלה איברים, אבל כל עוד הם לא הוגדרו אין לך חבורה מוגדרת.
פצע ומכה טריה 296708
האיברים כבר מוגדרים, כל מה שצריך זה להגדיר את הפעולה, ובגלל שהגדרת הפעולה היא פעולה טכנית בלבד, ומשום שאף אחד לא משתמש בפעולה הזאת, אז מה הבעיה להניח שקיימת כזו פעולה, לקרוא לקבוצה חבורה? בשביל זה המוציא לאור צריך לשלם כסף ליועץ טכני?
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296709
אאל"ט, לא תמיד אפשר להגדיר פעולת כפל בין האברים ולשמור על תכונת הסגירות (או תכונות אחרות של חבורה, כגון הפיכות).

למשל: קבוצת המספרים השלמים איננה חבורה. לא לכל a קיים בקבוצה b כך שמתקיים a*b=b*a=e. (אבר היחידה מסומן ב-e). זה מתקיים רק עבור האברים 1,1-.

כנראה שמשהו דומה קורה עם אברי קבוצת מנדלברוט. אבל למי אכפת? הציורים נורא יפים.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296713
כאן אתה טועה. זה רק עניין של הגדרת הפעולה. למשל, עבור קבוצת המספרים השלמים, בו נגדיר את פעולת ה"כפל" כחיבור.
סגירות יש? יש.
איבר אדיש יש? יש (0).
איבר הופכי יש? יש.
חוק בקיבוץ מתקיים? מתקיים.

מש"ל.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296720
האם יהיה נכון לקרוא לכל בית "תחנת רכבת" (ולחסוך כסף על הגהות) רק בגלל שאפשר לבנות מסילת ברזל לידו?
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296724
אתה יכול בלי בעיה להגיד שאין מסילת רכבת, אתה לא יכול להגיד שאין פעולה כזו.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296725
אני מריח ויכוח ארוך עם סמיילי שכל כולו התקטננות על סמנטיקה :)

אז רגע לפני שזה מתחיל - האם לכל קבוצה קיימת פעולה כך ש- (פעולה,קבוצה) היא חבורה? אם כן, האם יש לכך הוכחה? אם לא, האם יש דוגמא נגדית (רצוי פשוטה)?
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296728
כן, כל קבוצה S אפשר להפוך לחבורה על-ידי הגדרת פעולה מתאימה. הוכחה: אם S סופית, יש חבורה ציקלית בגודל הנכון. אחרת, החבורה החופשית הנוצרת על-ידי S היא בעלת אותה עוצמה, ולכן אפשר לתרגם את פעולת החבורה החופשית לפעולה על S.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296732
באמת, כדאי שנסיים עם הבדיחה הזאת מהר.

ולשאלתך, עד כמה שידוע לי, כן, מלבד הקבוצה הריקה (שלא מכילה איבר אדיש לשום פעולה) ואפשר להוכיח את זה על ידי איזומורפיזם למספרים השלמים או הממשיים או על ידי בניית חבורה שכז מקבוצה סופית.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296722
וואלה, אתה צודק. בגלל זה המציאו את הסימון (פעולה,קבוצה) ואי אפשר להגיד כלום על הקבוצה לבדה.

(+,Z) היא חבורה.
(*,Z) היא לא חבורה.
(בהנחה שאנו מסכימים על הגדרת הסימנים +,*)

המתטיקאים מוזמנים להעיר את הערותיהם לגבי האם קיים # כך ש (#,מנדלברוט) היא חבורה.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296726
אשאל שאלה יותר פשוטה:
האם באופן "טיפוסי" כל אוסף של מספרים מרוכבים מהווה חבורה תחת הגדרה מתאימה של הכפל?
אינטואיטיבית אני חושב שתמיד אפשר למפות את האוסף באופן חח"ע למישור המרוכב, ואז להגדיר את הפעולה # כפעולה שמבצעת כפל על המיפוי. מצד שני, הגדרת המיפוי נראית לי כמו סיוט.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296727
אני אולי לא מתמטיקאי, אבל אם קבוצת מנדלברוט היא קבוצה בת-מניה, אפשר פשוט לזהות אותה עם השלמים עם חיבור, ואז היא חבורה. אם היא מעוצמת רצף, ניתן לעשות זאת עם הממשיים עם חיבור.

השאלה היא אם יש פעולה טבעית ומעניינת על קבוצת מנדלברוט שהופכת אותה לחבורה.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296729
''השאלה היא אם יש פעולה טבעית ומעניינת על קבוצת מנדלברוט שהופכת אותה לחבורה'' - זהו, שלא. אפשר לקרוא לה ''קבוצת מנדלברוט שאפשר להפוך לחבורת מנדלברוט אם נגדיר פעולה מתאימה'', אבל באותה מידה אפשר לקרוא לכל קבוצה ''קבוצה שאפשר להפוך לחבורה אם נגדיר פעולה מתאימה'', ובעיני ''קבוצה'' זה שם יותר קצר.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296731
אלכ''נ, אבל תודה.
אז מה אם מייקל ג'ורדון שיחק כדורסל? 296747
מה גורם לך לחשוב ש"קבוצה" זה שם קצר יותר מ"קבוצה שאפשר להפוך לחבורה אם נגדיר פעולה מתאימה"?
באיזו הגדרה של אורך אתה משתמש?
אז מה אם מייקל ג'ורדון שיחק כדורסל? 296763
תתבייש לך על השאלה. האורך לא קובע.
אז מה אם מייקל ג'ורדון שיחק כדורסל? 296767
אז מה לדעתך כן קובע מי יותר קצר? קרבה לחברי מרכז?
אז מה אם מייקל ג'ורדון שיחק כדורסל? 296772
אורך הגלות. פרדוקס המספר הקטן ביותר שאי אפשר להגיד בלי להזכיר את אורכו.
Is there a mathmatician in the audience?! 296765
קבוצת מנדלברוט מוכלת במישור הממשי ומכילה משטחים ממשיים. לפיכך עוצמתה היא בהכרח הרצף.

האם זה אומר שניתן להגדיר התאמה חד-חד-ערכית-ועל בין הקבוצה לבין הממשיים?

אויה, שכחתי את מה שלכאורה ידעתי על תורת הקבוצות. הצילו.
Is there a mathmatician in the audience?! 296770
זו פחות או יותר ההגדרה. שתי קבוצות הן מאותה עוצמה אם קיימת התאמה חח"ע ועל מאחת לשנייה (זה יחס שקילות, למעשה).

כדי להראות שקבוצה אחת היא מעוצמה קטנה יותר מקבוצה אחרת די להראות התאמה חח"ע מה"קטנה" ל"גדולה", וזה מה שעשית כאן: קבוצת מנדלברוט מוכלת במישור הממשי (המרוכב, למעשה), כלומר יש התאמה חח"ע ממנה למישור (שפשוט מעתיקה כל נקודה לעצמה).
Is there a mathmatician in the audience?! 296773
תודה, אך לא נושעתי.

התאמה חחע"ע גוררת שוויון עוצמות. ברור. את זה אפילו אני זוכר.
אבל האם שוויון עוצמות גורר קיום התאמה חחע"ע שניתן *להגדיר*?

ובמילים אחרות - האם ליד כל בית אפשר לבנות מסילת ברזל?
Is there a mathmatician in the audience?! 296778
כאן אני כבר לא בטוח, אבל נראה לי שכן. הרי כדי להראות ששתי קבוצות הן מאותה עוצמה תצטרך להראות התאמה חח"ע ועל ביניהן, אין כאן ממש דרך עוקפת (גם שימוש בקנטור-שרדר-ברנשטיין בונה התאמה חח"ע ועל שכזו, אם כי עד כמה שאני זוכר זה לא אפשרי באופן כללי לתאר אותה). אם למשל הראית ש-A שקולה ל-B ו-B שקולה ל-C אז קל מאוד לבנות התאמה חח"ע ועל מ-A ל-B: מרכיבים את שתי ההתאמות שכבר יש לך.

אם תוכל להביא דוגמא למצב שבו אתה מוכיח ששתי קבוצות הן שקולות עוצמה בלי להראות התאמה חח"ע ועל בינן, זה מאוד יסקרן אותי. לדעתי *אי אפשר* לומר על שתי קבוצות שהן שקולות עוצמה מבלי להראות התאמה חח"ע ועל בינן - זו פשוט ההגדרה. מצד שני, אם ההתאמה שבונים בהוכחה של קנטור שרדר ברנשטיין לא נחשבת בעינייך למסילת ברזל, אז כן, לא ליד כל בית אפשר לבנות מסילת ברזל.
Is there a mathmatician in the audience?! 296785
האומנם אין דרך קיצור?
קל מאוד להראות ש
|C|=|R^2|>=|M|>=|R|
וכיוון שהודות לקנטור ושות'
|R^2|=|R|
ברורה גם עוצמת M.

כאן לא הראיתי שום התאמה אל או מאת M. ולא הצלחתי להשתכנע שחייבת להיות התאמה גדירה שכזו.

הנקודה המעניינת ביותר לענייננו היא סברתך לגבי ההתאמה: "לא אפשרי באופן כללי לתאר אותה". אם במקרה מנדלברוט אי אפשר לתאר אותה, אי אפשר להגדיר חבורה מעל הקבוצה, לפחות לא באופן זה. ואז השאלה נותרת פתוחה!
Is there a mathmatician in the audience?! 296788
אני לא בטוח שהבנתי, בוא נראה:
יש לי התאמה חח"ע מ-M אל R^2.
יש לי גם התאמה חח"ע ועל מ-R^2 אל R והתאמה חח"ע מ-R אל M. אם אני ארכיב את שתי ההתאמות הללו אני אקבל התאמה חח"ע מ-R^2 אל M. כלומר יש לי התאמה חח"ע בשני הכיוונים ובקנטור שרדר ברנשטיין אני בונה התאמה חח"ע ועל מ-M ל-R^2 (ולכן גם ל-R ולכל קבוצה מעוצמת הרצף שתרצה). שוב, זה קם ונופל על כמה קונסטרקטיבית ההוכחה של קש"ב נראית לך. אני לא חושב שאי הקונסטרקטיביות שלה היא ברמות של אקסיומת הבחירה.
Is there a mathmatician in the audience?! 296807
פקששתי.
אולי באמת כדאי שאני אחזור אל המחברות ואפסיק לבלבל את הציבור.
תודה.
Is there a mathmatician in the audience?! 296782
בהינתן אקסיומת הבחירה - או משפט הסדר הטוב - כן.
Is there a mathmatician in the audience?! 296774
צריך להראות התאמה חח''ע בכיוון אחד, בלי שניתן לעשות זאת בכיוון האחר.
Is there a mathmatician in the audience?! 296777
זה כדי להראות שהיא קטנה *ממש*. לרוב רוצים להראות שהיא קטנה או שווה (טוב, זה תלוי כמובן במה שאתה מנסה לעשות, ייתכן שתרצה דווקא להראות שהיא קטנה ממש).
Is there a mathmatician in the audience?! 296781
סליחה, התבלבלתי פעמיים: פעם אחת - לא שדמתי לב שמדובר בקבוצות שוות עצמה (כי ראיתי רק שכתוב על "עצמה קטנה יותר"). ופעם שנייה - שכתבתי חח"ע, כאשר כשמדובר על קטנה ממש - לא יכולה להיות פונקצייה כזאת. צר לי.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 296748
עכשיו שמתי לב שבתרגום של "כאוס" של ג'יימס גליק, מתרגם עמנואל לוטם את קבוצת מנדלברוט בתור חבורת מנדלברוט (שיתבייש לו!). אני מנחש שזה לפחות אחד מהמקורות של הביטוי בעברית.
אומרים שמייקל ג'ורדון שיחק בייסבול די גרוע 765143
בטח גם על זה דיברנו, אבל ככלל ''כאוס'' של גליק הוא ספר מדע פופולרי שכתוב גרוע ומעצבן.
ייתיכן שגם התרגום של לוטם וחבורתו אשם.

חזרה לעמוד הראשי המאמר המלא

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים