|
||||
|
||||
אני מספר שזו בעיה פתוחה להכריע האם יש או אין אסטרטגיה שמבטיחה הסתברות הצלחה חיובית קבועה, ללא תלות ב-n. יש אסטרטגיה ידועה שנותנת הסתברות הצלחה אחד חלקי לוג n (שזה הרבה יותר טוב מחצי בחזקת לוג n). ידוע גם שאם דורשים מהם להצביע על הכובע השחור הראשון, אז אי אפשר להשיג יותר מאחד חלקי לוג. |
|
||||
|
||||
מה האסטרטגיה הנ״ל? (אם היא פשוטה מספיק להסבר להדיוטות) |
|
||||
|
||||
היא פשוטה ודומה למדי לפתרון החידה המקורית. נסתכל על המיקום של הכובע השחור הראשון על ראש כל משתתף. בהסתברות גבוהה (הכנס חישוב מתאים) כל המיקומים הללו קטנים מלוג n. המשתתפים מנחשים מה סכום המיקומים מודולו לוג n. אם הם צודקים (מה שקורה בהסתברות אחד חלקי לוג n), אז כל אחד יכול לחשב את מיקום הכובע השחור הראשון על ראשו. |
|
||||
|
||||
תודה על ההסבר! |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |