|
||||
|
||||
אורך הגל בכלל לא רלבנטי בראייה (הה) שלי לגבי הענין פה. צביעה היא ''כיסוי'' בשכבה דקה, אורכי הגל לא מעניינים כאן. (לצורך הענין - הכדורים לבנים והצבע היחידי הוא שחור). אני דוקא חושב שאנלוגית הצביעה והפרדוקס (לכאורה) שהיא יוצרת - ופתרונו - דוקא מחדדים את ההבנה המתימטית של מה שקורה כאן, ולא רק מסיחים את הדעת בהיותם 'פיזיקליים' ולא מתימטיים. |
|
||||
|
||||
אחרי שקראתי את “כאוס” בצעירותי העשוקה וראיתי שאין שום דבר “פרדוקסלי” בקו שאורכו אינסופי שסגור בשטח סופי, אני לא חושב שיש כאן פרדוקס בכלל, והבעייתיות שבצביעה נובעת רק מהנסיון להחיל מציאות פיזית על אבסטרקציה מתמטית. |
|
||||
|
||||
''כאוס'' מתחרה על תואר ''ספר המדע הפופולרי הגרוע ביותר שקראתי''. בכל משפט שני שלו ניכר שהמחבר לא מבין כלום בתחום שהוא כותב עליו. הלקח שלי ממנו הוא לקרוא ספרי מדע פופולרי שכותבים מדענים ולא עיתונאים. |
|
||||
|
||||
קראתי אותו מזמן ואני לא זוכר שהוא השאיר אצלי רושם שלילי, אבל אולי זה מפני שגם אני לא מבין יותר מדי בתחום. |
|
||||
|
||||
גם אני לא מבין בתחום. הקריטריון העיקרי שלי לגבי ספרי מד"פ, הוא מה אני מבין ולומד כשהם מדברים על דברים שלא למדתי, לא על אלה שכן. זכורני אי אז במילניום הקודם כשקראתי את "קיצור תולדות הזמן" של הוקינג, שכל עוד הוא דיבר על פיזיקה שכבר הכרתי - הבנתי אותו מצוין. ברגע שעבר לתחומים מתקדמים יותר, ההבנה שלי צנחה פלאים1. אבל מעבר לזה, אני זוכר שהז'רגון שבו הוא השתמש היה פומפוזי ומלאכותי, דרמטי ומתלהם. כל תובנה ותגלית היו מפעימים, פורצי דרך ומזעזעי אמות הסיפים. בהסתכלות של רבע מאה אחורה, אפשר אפילו לומר שבמבחן הזמן תורת הכאוס (המגניבה כשלעצמה) היתה הרבה פחות משמעותית וקידמה את המדע והאנושות הרבה פחות מההייפ שעשתה כשנכתב הספר. 1 מעבר לצניחה הטריויאלית הצפויה, כמובן. |
|
||||
|
||||
אבל שטח הוא איננו "שכבה דקה" של משהו. שטח הוא בעובי של בדיוק אפס. בוא נסתכל על אותו בעיה במימד אחד. אם יש לך קטע באורך של 1מ, עדיין יש עליו מספר אינסופי של נקודות (למעשה מספר שאיננו בר מניה). איך אורך סופי מספיק "לצבוע" אינסוף נקודות? כי נקודה היא בגודל אפס. באותה מידה, אם נדמיין רק את אחד המיכלים הסופיים בתור מיכל צבע שבו "שכבות צבע" מסודרות זו על זו - אז יש בו אינסוף שכבות צבע. מספר שאיננו בר מניה. בין כל שתי שכבות צבע, יש שכבת צבע נוספת. עם כל כך הרבה צבע אפשר לצבוע את כל החדרים במלון הילברט אינסוף פעמים. אז תשים בכל חדר כדור אחד, ותצבע אותו על הדרך.. |
|
||||
|
||||
>> איך אורך סופי מספיק "לצבוע" אינסוף נקודות? אהה, סוף סוף הבנתי משהו בדיון הזה- פרדוקס החץ של זינון! |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |