|
||||
|
||||
בטבלה שבקישור הזה נראה לי שכל המקדמים הנפחיים הם הכפלה ב 3 של המקדם הקווי. המספר הכי קטן בטבלה 0.33 חלקי מליון עובר ל 1 חלקי מליון בטבלה ולפי החישוב זה יוצא 0.99000033 חלקי מיליון. המספר הכי גדול הוא של המים 69 חלקי מיליון. הוא עובר בטבלה ל 207 חלקי מליון ובחישוב המדויק מקבלים 207.0142833. כלומר מעשית ההכפלה ב 3 היא מדויקת מספיק. איני חושב שזה קשור לשינויים קטנים. עד כמה שהבנתי מה שכתוב שם שעצם הקביעה שמקדם ההתפשטות הן הנפחי והן הקווי הוא קבוע , כלומר שצריך להכפילו בהפרש הטמפרטורה כדי לקבל את הגידול במידה הוא נכון רק כשמדובר בהפרשי טמפרטורה קטנים. |
|
||||
|
||||
נראה לי שמה שמבלבל לאורך הפתיל (לפחות אותי), זה שהגדרת מקדם ההתפשטות היא לא אינטואיבית (או למצער - זה מה שבלבל אותי עד שחפרתי בנוסחאות בויקיפדיה). ההגדרה ה'אינטואיטיבית' היא כפלית - אם החומר התארך פי שתיים עבור שינוי של 1 מעלה, אזי המקדם יהיה 2. (ואז כמובן, הנפח יגדל פי 8, והמקדם הנפחי יהיה 2 בחזקת שלוש או 8 כצפוי על פי אותה אינטואיציה). אבל לא - מקדם ההתפשטות הנפחי(/אורכי) מוגדר רק על ה*הפרש* בין המצב המקורי למצב אחרי ההתפשטות. ולכן, אם החומר התארך פי 2 המקדם הלינארי יהיה 1 (2-1), ואם הנפח גדל פי 8 המקדם הנפחי יהיה 7 (8-1). מכאן אנחנו מיד רואים שהמקדם סוטה מהחזקה המשולשת הצפויה. אז מאיפה מגיע דוקא הגורם ה*כפלי* ולא ה*חזקתי* של שלוש במעבר ממקדם אורכי למקדם נפחי? מהקירוב למספרים קטנים: אם האורך אחרי ההתפשטות גדל ב-r קטן מאד אזי הקירוב 3^(1+r) נותן בערך 1+3r (כי שאר הגורמים עם חזקות גבוהות של r קטנים מאד). למשל, נניח ש-100 מטר התארכו באחוז ל-101. 101 בשלישית יתנו לנו 1030301 שזה תוספת של 3.03% על הנפח המקורי. זה קרוב לפי-שלושה מהאחוז המקורי, והקירוב משתפר ככל שמקדם ההתארכות קטן. כמו שראינו - הקירוב הזה נכשל כשלון חרוץ בדוגמה הראשונה, שבה היחס בין מקדם אורכי לנפחי הוא 7 ולא 3. בויקיפדיה נרמז שלא רק הקירוב נכשל על התארכות גדולה, אלא שכל המודל הלינארי של התארכות מתחיל לאבד את התוקף שם, אבל זה כבר ענין אחר. |
|
||||
|
||||
אבל מה לעשות אכן, ככל שמדובר במוצקים או נוזלים מדובר במספרים קטנים מאד, ולכן הקירוב הזה טוב. מה היא הדוגמה הראשונה? |
|
||||
|
||||
הדוגמה של התארכות פי 2. |
|
||||
|
||||
גידול בנפח פי 2 למעלת צלסיוס אחת זה משהו שלא קיים. אפילו גז אידיאלי (בטמפרטורת החדר) זקוק כמעט ל 300 מעלות כדי שנפחו יגדל פי שניים. אבל בעיקרון כל מה שאמרת נכון. |
|
||||
|
||||
אני מאמין שזה קורה כמה עשרות פעמים בשנייה במכוניות של כולנו - לא ממש תנאי קיצון שמצריכים דוגמאות אסטרונומיות כדי לקיים אותם. אבל כמובן שזו היתה רק דוגמה לסבר את האוזן. |
|
||||
|
||||
הכפלת הנפח בגלל עלית טמפרטורה במעלת צגסיוס אחת? זה לא קורה במכוניות שלנו. אפילו לא פעם אחת ביממה. |
|
||||
|
||||
דיברת על 300 מעלות. (כל החישוב שהראיתי קצת מפשט ולכן כולל את מקדם ההתפשטות *כפול* השינוי בטמפרטוה כמספר יחיד. כך שלמשל ההכפלה ב-2 שהזכרתי יכולה להיות עבור מקדם של 0.01 והפרש של מאה מעלות. את החלוקה הספציפית ביניהם השארתי בתור תרגיל לקוראים :) ) |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |