בתשובה לשוטה הכפר הגלובלי, 10/09/15 14:07
''השלטון מכפיף את החשיבה לחישוב'' 663292
ואם כבר, אתה יכול לחלוק איתנו את הגירסה שאתה מכיר לדימיוניות ה"דימיוניים", ומה גרם לחווית ה"א-הה"?
''השלטון מכפיף את החשיבה לחישוב'' 663295
הסיפור טיפה ארוך, אבל מה שקרה הוא שבמהלך נסיון לפתור סוג מסויים‏1 של משוואות ממעלה שלישית נתקלו לפעמים בצורך להוציא שורש ממספר שלילי בדרך לפתרון. ברור שרוב האנשים שמגיעים לשלב הזה (ובפרט תלמידי התיכון שאמורים, לשיטתי, להגיע בעזרת המורה לאותה נקודה) מקללים קצת, זורקים את מה שעשו לפח ומנסים למצוא דרך אחרת. מתמטיקאי איטלקי בשם קרדנו עלה על הרעיון לנסות לראות מה קורה אם לא מתייאשים, כלומר הוא אמר משהו כזה: בואו נדמיין שיש שורש למספר השלילי הזה, ונמשיך את הפיתוח שלנו הלאה עם אותו מספר דמיוני שהנחנו, בתקווה שנצליח להפטר ממנו אח"כ, מה שבאמת קרה באותה משוואה. קרדנו עצמו, כמו מתמטיקאים אחרים בזמנו, היה ספקן גדול בקשר לחשיבות הרעיון הזה, והכריז עליו כחסר ערך. חסר ערך!
__________
1- מהצורה x^3 + mx + n = 0 . כל משוואה ממעלה שלישית ניתן להמיר לצורה הזאת ע"י הצבה מתוחכמת, אבל לא נכנס לזה כרגע. ספציפית המשוואה היתה
x^3 - 15x - 4 = 0 ובדרך לפתרון היה צורך לחשב את השורש הריבועי של 121- (למזלנו. אני מנחש שאם היה צורך להוציא שורש ריבועי של 342124.564646- הוא היה פשוט פורש).
''השלטון מכפיף את החשיבה לחישוב'' 663298
יופי של סיפור.

האירוניה (הנוספת) שמסתתרת מאחוריו היא שהרי הרבה לפני ה'צורך להוציא שורש ממספר שלילי בדרך לפתרון של משוואה ממעלה שלישית' כמו למשל x^3 - 15x - 4 = 0 הנזכרת, עלה מן הסתם הצורך להוציא שורש למספר שלילי כדי לפתור את המשוואה ההרבה יותר פשוטה ממעלה שנייה x^2 + 1 = 0. אלא שמי שסרב כבר כאן לדמיין שקיים כזה, נועד להיתקל בצורך הזה שוב בבעייה הרבה יותר מסובכת, ודוקא שם הסכים לחשוב על הבלתי נתפס.
אבל זאת כנראה תופעה נפוצה, מי שלא מספיק לו פטיש של קילו, לרוב יקבל פטיש של חמישה קילו בפעם הבאה.
''השלטון מכפיף את החשיבה לחישוב'' 663299
כאמור, הוא "הסכים לחשוב על הבלתי נתפס" בתקווה שאותו בלתי נתפס הוא ישות וירטואלית שתמות תוך כדי החישוב, כפי שאכן קרה, בניגוד לפתרון המשואה x^2 + 1 = 0 שאמור להיות משהו "אמיתי". כלומר "בואו נניח לרגע שהשורש הזה קיים ונראה מה קורה הלאה" הוא פחות מהפכני מ"בואו נחליט בכוח שקיים פתרון למשוואה הריבועית".

האנלוגיה לפיזיקה מודרנית די משעשעת: גם הרעיון שניתן יהיה להפטר מגודל משוגע בהמשך החישוב (שורש של מספר שלילי כאן, אינסוף בכל מיני חישובים בפיזיקה שנעלם בעזרת טכניקות נורמליזציה), וגם הרעיון שאותו מספר "דמיוני" מופיע ונעלם לו בהמשך קצת מזכיר חלקיקים וירטואלים.
''השלטון מכפיף את החשיבה לחישוב'' 663301
שתי האנלוגיות הנ"ל עלו במחשבתי וברגע האחרון לא הכנסתי אותן לתגובתי הקודמת. אכן כך‏1. אנלוגיה נוספת מעולם הפיזיקה המודרנית הוא האנטי-חלקיקים שנובאו כחלק מהפתרונות של משוואת דיראק. האנלוגיה הזאת אפילו דומה יותר, כי הסיבה שבתחילה סרבו להכיר בחלקיקים הללו היא שהם נושאים אנרגיה 'שלילית' בפרשנות הראשונית של המשוואה - דבר בעייתי בפיזיקה לפחות כמו שורש של מספר שלילי במתימטיקה.

1 טכנית כנראה שענין החלקיקים הוירטואליים פחות דומה, והוא מוצג באופן קצת שגוי בספרות הפופולרית, אבל נניח לזה כרגע‏2. קונספטואלית בהחלט יש דמיון.
2 טוב, למי שממש מתעניין, נתקלתי לאחרונה בהסבר מפורט יחסית אבל במושגים פשוטים שמתייחס לנקודה הזאת בהרחבה: 'חלקיקים' וירטואליים - האמנם?
''השלטון מכפיף את החשיבה לחישוב'' 663304
סתם הערה (קצת היסטורית, קצת מתמטית): אין שום צורך להוציא שורש למשוואה x^2 + 1 = 0. אפשר פשוט להכריז שאין לה פיתרון (וזו הכרזה מדוייקת, מעל הממשיים). לעומת זאת, כאשר עוברים למשוואות ממעלה שלישית נתקלים בתופעה שלא קיימת במשוואות ממעלה שנייה: משוואות עם פתרונות ממשיים, שאין דרך לבטא אותם כפונקציה אלגברית של מקדמי המשוואה מבלי שבדרך, כשלבי ביניים, יצוצו מספרים מרוכבים.

זה יוצר בעיה קשה למי שרוצה להכריז ש-"מספרים דמיוניים" הם דמיוניים לעומת "מספרים ממשיים" שהם ממשיים. הנה פולינומים עם מקדמים ממשיים - כלומר המשוואות הכי קונקרטיות שאפשר לבקש - להם פתרונות רגילים לחלוטין שאפשר ממש להצביע עליהם, אבל אין דרך לבטא אותם בלי לעבור דרך המרוכבים.

כמובן שהמספרים הממשיים גם לא נחשבו פעם "ממשיים", וסיפור מאד דומה הוביל לקבלתם ככאלה: אז היה מדובר בבניה גיאומטרית קונקרטית לגמרי שגרמה למספרים לא רציונלים לצוץ (כאורך האלכסון של ריבוע שאורך צלעו הוא 1). בשני המקרים הדבר שהוביל להתייחסות רצינית למושגים אבסטרקטיים (מספרים לא-רציונליים, מספרים דמיוניים) הוא ההופעה הטבעית שלהם בסביבה קונקרטית.

אני חושב שאפשר לראות דברים דומים גם במתמטיקה מודרנית יותר. נגיד, אני משער שעדיין היו רואים בתורת הקטגוריה "Abstract Nonsense" אלמלא עבודתו המטורפת (נו-פאן אינטנדד) של גרות'נדיק באלגברה הומולוגית וגיאומטריה אלגברית. אבל מן הסתם התפיסה המודרנית של המתמטיקה שונה מאד מהמצב בימי הביניים או ביוון הקלאסית (למשל, גיאומטריה אלגברית, בה הטופולוגיה שנוצרת על ידי האידיאלים של חוג היא רק נקודת ההתחלה, נחשבת לסביבה "קונקרטית").
''השלטון מכפיף את החשיבה לחישוב'' 663310
סיפור מעניין, אבל לפי ויקיפדיה,

The name "imaginary number" was coined in the 17th century as a derogatory term, as such numbers were regarded by some as fictitious or useless.

מי צודק?
''השלטון מכפיף את החשיבה לחישוב'' 663322
איפה הסתירה?

דקראט הוא זה שטבע את המונח "מספרים דמיוניים", מן הסתם במאה ה-‏17 (ישראל קליינר ב-"לקבל את הבלתי מתקבל על הדעת: סיפורם של המספרים המרוכבים" ובנו ארבל ב-"מתמטיקאים ואירועים גדולים בתולדות המתמטיקה" מסכימים על זה). לא נראה שהיה מדובר ב- derogatory term, כי הוא השתמש בהם בעצמו, ועושה רושם שהמונח נועד בסה"כ לבטא את אי-המצאותם של נקודות כאלה במישור הקואורדינטות (רעיונו הבאמת גדול של דקארט, עם כל הכבוד ל-cogito).

יחד עם זאת, הסיפור של שכ"ג פחות או יותר נכון. פרט לכמה אזכורים אנדקוטוליים מוקדמים יותר ללא השלכות של ממש, המספרים המרוכבים מופיעים לראשונה בעבודתם של מתמטיקאים איטלקיים (בעיקר קרדנו, בומבלי, טרטליה, דל פרו), על משוואות ממעלה שלישית במאה ה-‏16. כינו אותם בכל מיני שמות, כמו "מספרים שקריים לגמרי" - אבל להבנתי בכל מקרה לא מדובר בכינוי גנאי למינהם, ואפילו להפך: במעין תרגיל רטורי שנועד להקל על קבלת הרעיון בידי הקוראים (משהו בסגנון "כן, אני יודע שזה נשמע כמו שטויות - אבל רגע, תראו, זה עובד").
''השלטון מכפיף את החשיבה לחישוב'' 663336
הסתירה (הלא כל כך חמורה) היא בין הטענה בוויקיפדיה לפיה הביטוי "מספר מדומה" התחיל ככינוי גנאי, לבין הגרסה שהביא שכ"ג, לפיה מקור השם הוא בגישה הקונסטרוקטיבית (וחסרת הגנאי) "בואו נדמיין שיש שורש למספר השלילי הזה, ונמשיך את הפיתוח שלנו".

אם אני זוכר נכון, בספר החדו"א של זעפרני וקון (שדורות של תלמידי הטכניון למדו ממנו) כתוב שמספרים אי-רציונליים נקראים כפי שהם נקראים כי הם נראו פעם "לא הגיוניים". באמת? למיטב הבנתי המספרים הרציונלים נקראים רציונליים כי אפשר לבטא אותם כיחס (ratio) בין שני שלמים, ולכן האי-רציונלים הם פשוט אלה שלא ניתן לבטא אותם כיחס כזה.
''השלטון מכפיף את החשיבה לחישוב'' 663340
לגבי הרציונלים והאירציונלים גם אני חושב כמוך. אולי זה בגלל שאנחנו אנשים רציונלים.
''השלטון מכפיף את החשיבה לחישוב'' 663363
טוב, חברים, היום זה אחד הימים שיצא לנו משהו מהאייל.

בנוגע לאי-רציונליים, גם אני נתקלתי בטענת ה"לא הגיוניים", והייתי בטוח כמוך שהיא שגויה וזה קשור לרציו=יחס. אבל עכשיו פתאום שאלתי את עצמי: מה הקשר האטימולוגי בין "רציו"=יחס ל"רציונלי"=הגיוני?

אז הנה התשובה המדהימה: קון וזעפרני צדקו. כלומר, כמעט. "אירציונלי" בלטינית פירושו באמת "לא הגיוני", וזה היה תרגום אולי לא הכי טוב של "אלוגוס" שטבע אאוקלידס, שפירושו יכול להיות "לא הגיוני" אבל גם, יותר סביר, "לא ניתן לאמרו" או שמא (יותר מגניב, ומתאים לסיפור על אאוקלידס והמספרים האלו) "אסור לאמרו"‏1. בלטינית גזרו לאחור מ"מספר אירציונלי" את "מספר רציונלי". "רציו" קיימת בלטינית, אבל במשמעות של "נימוק"‏1 או "חישוב", לא במשמעות של יחס. את המשמעות "יחס", עד כמה שהמלומדים יכולים להסיק, גזרה האנגלית לאחור מ"מספר רציונלי".

בכלל, גזירות לאחור זה אחד התהליכים הכי מצחיקים שיש בשפות, והם תמיד מועדים לבלבל אנשים הרבה שנים אחר כך, כמונו, שיש להם רציונליות אבל חסרות להם עובדות.

1 קשה לי לדעת בדיוק, בגלל שאני מתרגם את ההסבר מאנגלית...
''השלטון מכפיף את החשיבה לחישוב'' 663365
יפה מאד. אכן יצא לנו היום משהו מהאייל.

וכדי שייצא משהו ליותר אנשים, מי מתנדב לתקן את הערך "מספר רציונלי" בויקיפדיה העברית? (שם כתוב: "המונח 'רציונלי' מקורו במילה 'ratio' שמשמעותה יחס, דבר המבטא את העובדה שמספר רציונלי הוא היחס בין שני מספרים שלמים.") כדאי אולי יהיה לתת שם סימוכין יותר משכנעים מאשר לינק לדיון ב-stackexchange.
''השלטון מכפיף את החשיבה לחישוב'' 663366
התחלתי (בדף השיחה של מספר רציונלי [ויקיפדיה]). עדיין אין לי מושג מושג מהם השימושים הראשונים באנגלית שאליהם מכוון העונה.
''השלטון מכפיף את החשיבה לחישוב'' 663390
זו תיאוריה בלבד.
''השלטון מכפיף את החשיבה לחישוב'' 663327
בנוסף למה שעומר ענה לך, אתה באמת מתכוון לקלקל את הסיפור שלי עם עובדות? תתבייש.

חזרה לעמוד הראשי המאמר המלא

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים