|
עם זאת שקשה לי לסתור את מה שאתה אומר, הבה נבין את ההקשר: א. 99 אחוז מבוגרי מערכת החינוך לא יהיו מתימטיקאים. בוא נניח שה-80% שלומדים 4 יחידות וודאי שלא. נשארנו עם 20% בוגרי 5 יחידות, שיכולים למנף את זה כדי להיות מתימטיקאים, מתכנתים, מהנדסי חשמל/תוכנה/חומרה/מכונות/חומרים/אוירונאוטיקה וגו'. ז"א שגם מהם, אחוז קטן יהיה 'מתימטיקאים מקצועיים'. ב. גם לאחוז הקטן שירצה להיות מתימטיקאי מקצועי, הבסיס גם לתיאוריות המורכבות יותר הוא הלחם והחמאה של ניסוח בעיות, אלגברה וטריגו וגיאומטריה מרחבית ואנליטית וסטטיסטיקה ומרוכבים וכל החבר'ה האלה. עם כל ההבדל ביניהם לבין מה שנדרש ממתימטיקאי באוניברסיטה (שציינתי איפשהוא בדיון על ההבדל בין חשבון למתימטיקה), עדיין קשה עד בלתי אפשרי ללמוד מתימטיקה גבוהה בלי שליטה בבסיס הזה.
כמובן, שמי מבוגרי חמש יחידות שימשיך למתימטיקה ברמה אקדמית, יזדקק לפתח מיומנויות חדשות מעבר לנלמד בתיכון. אבל זה טריוויאלי, לא?
יותר ספציפית, אני חושב שדווקא בעיות והוכחות בהנדסת המישור - שבוגרי תיכון נתקלים בהן רבות, ונחשבות לאחד התחומים הפחות שימושיים בחומר הנלמד - הן קשות מאד לניסוח (הפתרון) בתבניות ידועות מראש. הן מייצגות חשיבה מופשטת יותר שצריכה לבחור באחד הכלים שברשותה כדי לפתור את הבעייה (להשתמש בטריגו, או בזהויות משולשים, או לעשות בנייה כזו או אחרת שתפשט את הבעייה וכולי), וזה דוקא דומה יותר לחשיבה שנתקלים בה גם באוניברסיטה.
|
|