|
||||
|
||||
יש לנו שלוש צירים x,y וt בזמן 0 גם ההידרה וגם הרקולס נמצאים ב(1,0) הראש של ההידרה נע ימינה ביחידת זמן ומגיע ל (1,1,1) שם הוא מחשב את האיבר הראשון של הסדרה המתחילה ב1 שהוא 1 ולכן הוא חוזר לשמאלו של הרקולס באותו זמן שהוא שלח אותו כלומר ב (1,1-,1) יש ראש של הידרה. באותה דרך אם ההשערה נכונה עד 1-i אז ב (i,0,i) ימצא הרקולס והוא ישלח את ההידרה ימינה לכן ב(i,1,i+1 ) ימצא ראש של הידרה המחשב את האיבר הראשון בסדרה המתחילה ב i מכיוון שi שונה מ1 הוא ימשיך לצעוד ימינה וב (i,2,i+2) יהיה ראש של הידרה והוא יחשב את האיבר השני של הסדרה המתחילה בi כך הוא ממשיך לכן אם לכל איבר בסדרה עד האיבר הk-י לא הגענו ל1 בכל שלישיה מהצורה (i,r,i+r) כאשר r קטן שווה לk יהיה ראש של הידרה המחשב את האיבר הr של הסדרה המתחילה בi אם לסדרה יש אחד באיזשהו מקום אז הוא יחזור לשמאלו של הרקולס ולכן ב(i,-1,i) יהיה ראש של הידרה ולכן הרקולס וההידרה יתקדמו צעד קדימה ויגיעו ל (i+1,0,i+1) אחרת הרקולס וההידרה ילכו לאולימפוס. אם מסתכלים רק על המקומות שy שווה ל0 מקבלים שב (i,i) הרקולס וההידרה נמצאים רק אם כל המספרים עד i מקיימים את התנאי לכן הרקולס וההידרה יחזרו לאולימפוס רק אם ההנחה שקרית. |
|
||||
|
||||
אני לא מבין את ''יחזרו לאולימפוס''. זה נראה כאילו אתה הופך את הבעיה לשקולה ל''בדוק האם בוצעו אינסוף צעדים'', ולא ברור איך בודקים את זה. |
|
||||
|
||||
הם ישתמשו בכוח המיוחד של ההידרה ויחזרו לאולימפוס בזמן שלנו. גם בבעיה המקורית (גולדבך) במובן מסוים בדקת האם נעשו אינסוף צעדים כך שאני לא מבין איזה נקודה נראית לך שונה. |
|
||||
|
||||
כי כאן צריך להרכיב את הבדיקה ההיא על מה שכבר קורה, ואני לא רואה את החלקים מתחברים. מילא, נתתם לי תרגיל כיפי בחישוביות. מתישהו אחשוב עליו עד הסוף ואז אוכל להסכים/למצוא דוגמה נגדית משכנעת. רק קצת חבל שהדיון לא יימשך כאן. |
|
||||
|
||||
אחלה. השאלה העיקרית היא האם ברור לך שעברת לטענה אחרת?:) (גם אם בפוקס היסטרי הבנת את הבדיחה אתה כמובן לא חייב לענות). |
|
||||
|
||||
הבנתי, הבנתי. |
|
||||
|
||||
הרקולס עונה בזמן סופי על השאלה "האם חישוב נתון יסתיים בזמן סופי" (אם אנחנו יודעים שכן, נוכל לבצע את החישוב בעצמנו בזמן סופי ולקבל את התוצאה). ת'ור: אותו דבר, אך החישוב הנתון יכול לכלול שאלות דומות להרקולס. |
|
||||
|
||||
כאמור, אני צריך לראות האם מסתדר לי שת'ור ישאל את הרקולס שאלות, או שיש לנו כאן רמת היררכייה נוספת של מופרכות, וזה משהו שכבר אענה לעצמי עליו בעתיד. |
|
||||
|
||||
שימוש באינסוף ראשים נוספים נראה לי לא אלגנטי. נראה לי שת'ור היה יכול להסתפק בעזרה מהרקולס1, ולא צריך גם את המדוזה. לכל מספר ת'ור מטיל על הרקולס משימה לחזור ולדווח על ערכו. הרקולס, אגב, יוכל לזהות לולאות (גם אם הן לא כוללות 1). לכן הסיבה היחידה שתמנע מהרקולס לחזור, היא אם הסדרה שמתחילה מהמספר אינה חסומה ותמשיך לגדול לנצח. אם הרקקולס לא חוזר, ת'ור יכול לחזור מייד ולדווח שהטענה אינה נכונה. אם ת'ור לא חוזר ומדווח, הטענה נכונה. 1 במחשבה שניה, אולי עדיף לגייס את סיזיפוס לעזרה במקום את הרקולס? |
|
||||
|
||||
1) השערת קולאץ טוענת שכל סדרה תגיע ל1 ולא שכל סדרה חסומה אבל זה נקודה יחסית שולית. 2. הסיבה העיקרית שהשתמשתי בראשי הידרות ובמערכת צירים היא כי רציתי להימנע משתי דמויות זהות באותו זמן ומקום (מה שמוביל לפרדוקסים נוספים). 3. אם הבנתי נכון, אז גם השיטה שלך תעבוד. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |