|
אתה חושב על אותו דבר שדרור אמר - שהמרוכבים הומצאו כדי למצוא פתרון למשוואה x^2+1=0. זו מוטיבציה לא רעה (אכן, כמו שקנות' מציג את זה, אפשר לחשוב על בניית כל מערכות המספרים, מהטבעיים ועד למרוכבים, כאילו המוטיבציה לה מגיעה מפתרון משוואות פולינומיות). מבחינה היסטורית זה לא היה כך - המרוכבים הומצאו בגלל צורך פרקטי מסויים - יש משוואות ממשיות ממעלה שלישית שכדי לפתור אותן בצורה אלגברית *חייבים* להוציא שורש למספר שלילי (יש לכל זה משמעות פורמלית). כמובן שאז עוד לא קראו להם מרוכבים, ועוד לא ראו שיש להם תכונות של שדה, ואף אחד לא הוכיח את משפט קושי וכו' - רק הוציאו שורש למספר שלילי.
מתי התחילו לדבר על "מספרים אלגבריים" כקבוצה מובחנת, אני לא יודע (אני משער שלא אחרי קומר) אבל לא ברור לי למה אתה מדבר עליהם. אגב, מספר אלגברי הוא מספר שפותר משוואה רציונלית ממעלה כלשהי, לא רק שניה (השורש השלישי של שתיים אינו פתרון של אף משוואה ממעלה שניה).
|
|