|
אוקי, נראה לי שיש לי הוכחה למקרה הכללי. מי שלא רוצה לראות, שלא יסתכל (אבל אני מקוה שמישהו כן יסתכל כדי להגיד לי אם אני צודק). אגב, יש סיכוי למערכת לכתיבת תגובות עם תוכן מתמטי (כמו שלהם http://wordpress.com אולי?).
> > > > > > > > > >
נניח בדרך השלילה שקיימת העתקה כזו ונסמנה (*). נתבונן בנקודות א, ב, ג במצב כללי (משולש), ההעתקה מעבירה אותן לנקודות א*, ב*, ג* שגם הן במצב כללי. כעת, נתבונן בנקודה ד במצב כללי מחוץ למשולש מ=אבג, אזי קיים מרובע קמור שקודקודיו אבגד. לכן בהכרח ד* נמצאת בתוך המשולש מ*=א*ב*ג* (כי מעתיקים מרובעים קמורים לקעורים). מכאן שההעתקה (*) מעתיקה את כל הנקודות במצב כללי מחוץ ל- מ אל תוך מ*. כעת נתבונן במשולש נ שקודקודיו נמצאים כולם במצב כללי ביחס ל- מ וכן קודקודי מ נמצאים במצב כללי ביחס ל- נ. אזי בהכרח נ* מוכל ממש ב- מ* אבל גם מ* מוכל ממש ב- נ* ומכאן סתירה.
|
|