|
||||
|
||||
אני עדיין לא מבין. הבנתי את הרעיון הבסיסי, אבל לא למה זה עובד. אתה אומר "נצפין בדרך הרגילה" ו"נפענח בדרך הרגילה" - אבל איך אתה עושה את זה? כדי לבנות מפתחות הצפנה ופענוח שעובדים, אתה צריך לדעת את פונקצית אוילר של pq; כדי לדעת אותה, אתה צריך לדעת את p,q *ולדעת שהם ראשוניים*. אם הם לא ראשוניים, אנחנו באותו ברוך כמו כל מי שמנסה לפרוץ מבחוץ; החישוב של פונקצית אוילר של מספר קשה בדיוק כמו הפירוק שלו לגורמים. אז מה שקורה (לדעתי; לא בדקתי אף פעם מימוש "אמיתי" של RSA) הוא שמחשבים את פונקצית אוילר פשוט בעזרת הנוסחה (p-1)(q-1) שנכונה רק עבור ראשוניים. אם אין לך ראשוניים, תקבל d שייתכן מאוד שלא יעבוד (עשיתי כמה ניסויים עצמיים בזה - מקבלים d שלפעמים עובד ולפעמים לא). אני לא רואה למה השיטה שאתה מציע פותרת את הבעיה הזו (כמובן שייתכן שהיא פותרת ואני פשוט מפספס את החשבון).
|
|
||||
|
||||
אז השיטה ברורה. עכשיו רק נשאר להסביר למה היא עובדת. אם כן, נניח שעבור A מסוים אנחנו יודעים ש- A^(p-1)=1 מודולו p, וש- A^(q-1)=1 מודולו q. עכשיו, את מפתחות ההצפנה והפענוח d,e בונים כך שיתקיים de=1 מודולו (p-1)(q-1). אם ההודעה המקורית היתה A, ההודעה המפוענחת תהיה A^de. נבדוק מה קורה מודולו p ומודולו q בנפרד. מודולו p: A^(de) = A^(k*(p-1)*(q-1)+1) = (A^(p-1))^(k*(q-1))*A = 1^(k*(q-1))*A = A ואותו הדבר מודולו q. ממשפט השאריות הסיני(1) נובע שנקבל חזרה את A, ולכן הפענוח יצליח.----------------- (1) עכשיו שמתי לב שבעצם יש פה דרישה נוספת - ש- p ו- q יהיו זרים (כלומר, אם במקרה נפלנו בשניהם על מספרים פריקים, ואם במקרה שני המספרים הפריקים אינם זרים זה לזה - נדפקנו). אפשר פשוט לוודא שהם זרים (אלגוריתם GCD הוא פולינומיאלי בגודל הקלט). לחליפין, אפשר לפתור בדרך אחרת: במקום לבדוק ש- 2,3,5 וכו' עוברים את מבחן פרמה, תבדוק ש- a^de=a מודולו pq, עבור כל המספרים האלו. אז מובטח לך שזה יהיה נכון גם עבור כל מכפלה שלהם. |
|
||||
|
||||
אחלה. עכשיו אני נוטה להסכים שמדובר בשיטה לא משהו, אבל שהיא עובדת. |
|
||||
|
||||
אני בטוח שאחרי השרשור הזה נחה דעתו והתבססה הבנתו של מוס גולמי :-) |
|
||||
|
||||
לדעתי נחה הבנתו (היא לא התקדמה לשום מקום) והתבססה דעתו (על משתתפי הדיון). |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |