|
||||
|
||||
מתברר שרק להודות באייל על הבורות שלי גורם לי לפתור: קודם עם גדי, עכשיו איתך. את מה שאתה כותב ניסיתי, אבל לא הצלחתי לחלק את האינסוף לקבוצות (השלב הראשון שלך, שהנחת שהוא קל; צריך כמובן שהקבוצות תהיינה "זרות מספיק"). עכשיו גיליתי לבד איך. תודה בכל אופן (-: |
|
||||
|
||||
איך? אני חושב על חלוקה לקבוצות בעזרת ראשוניים (קבוצה אחת של כל האיברים שמספרם הסידורי הוא חזקה של 2; קבוצה אחרת של חזקות של 3, וכן הלאה - ועוד קבוצה של כל אלו שלא נכנסו לאף אחת מהקבוצות הללו) אבל בטח יש משהו יותר פשוט. |
|
||||
|
||||
אוי, אני חמור. כל הזמן חשבתי מסביב לראשוניים, אבל על חזקות שלהם לא חשבתי. מה שכן חשבתי בסוף הוא טיפה יותר מסובך משלך: הראשון הוא כפולות של 2; השני הוא כפולות של 3 שאינן כפולות של 2; ... ה-N הוא כפולות של המספר הראשוני ה-N שאינן כפולות של שום מספר ראשוני קטן יותר. אגב, אאל"ט אינך צריך את הקבוצה האחרונה שלך (מתי בכלל תשתמש בה?). מה שמעניין הוא ששני הפתרונות שלנו נותנים קבוצות זרות לחלוטין, שזה יותר חזק ממה שנחוץ - אאעל"ט[*] מספיק שלכל שתי קבוצות An, Am יהיו ב-An אינסוף אברים שאין ב-Am. [*]עדיין |
|
||||
|
||||
אתה חמור? לעולם אל תכנה את עצמך בכינויים מעליבים. תמיד יימצאו אחרים שיעשו את זה טוב ממך :) |
|
||||
|
||||
איפה תשים את 6 למשל? ועוד אפשרות: "מנה את הרציונליים החיוביים" (= העתקה חח"ע ועל מהם לשלמים החיוביים. אופס, לא ממש עזרתי נכון?), ותגדיר את הקבוצות כמספרים הסידוריים של כל הרציונליים בין 0 ל-1, בין 1 ל-2, בין 2 ל-3 וכו'. אבל זאת סתם התחכמות, ובטח יש מלא דרכים אחרות יפות. אגב, אולי מישהו סוף סוף יגיד לי מה זה אאל"ט ותטל"א? |
|
||||
|
||||
אם אני לא טועה. תשובה טובה לשאלה אחרת. |
|
||||
|
||||
בקבוצה הראשונה: כל האי זוגיים. בשניה: האי זוגיים כפול 2. ב-n: האי זוגיים כפול 2 בחזקת (n-1). |
|
||||
|
||||
הקבוצה השנייה מכילה את השלישית, לא? |
|
||||
|
||||
לי יוצא שהן זרות: ...2,6,10,14,18 לעומת ...4,12,20,28 תקן אותי אם אני טועה. (הרעיון: מפרידים את הטבעיים לאי-זוגיים וזוגיים; קבוצת הזוגיים מתאימה לטבעיים כפול 2, אז אפשר לבצע בה הפרדה כמקודם; וחוזר חלילה). |
|
||||
|
||||
צודק, התבלבלתי. |
|
||||
|
||||
את 6 אני אשים בסדרה הראשונה, כפולות של 2. אבל כפי שאמרתי לגדי בנוגע לקבוצת-כל-השאר שלו, אני לא חייב בכלל לשים אותו - אני צריך תתי קבוצות אינסופיות של השלמים, אבל אני לא חייב לכסות את *כל* השלמים; רק במקרה יצא לי כך. גם הדרך שלך לא פחות טובה - ואת ההעתקה מהרציונליים לטבעיים אני דווקא זוכר עדיין, לפחות זה (-: |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |