|
||||
|
||||
לא הייתי מלמד על המרוכבים בתיכון, אלא אם תוכנית הלימודים הייתה משתנית בצורה כזאת, שגם לשימושים שלהם היו מגיעים התלמידים באותה השנה. תהיה רתיעה מהמספרים המרוכבים גם אם ילמדו אחרת. אם אתה יודע מההתחלה שכל המספרים הם המצאה, זה לא משנה את העובדה שהממשיים וכו' הם המצאה ששימושיותם ברורה יותר. גם תמיד יהיה יותר קל לחשוב על הממשיים. |
|
||||
|
||||
אוקיי, אני חוזר על השאלה: מהם ה"שימושים שלהם" שהיית רוצה להראות לתלמידים? למשפט השארית לא נראה לי שהיית מגיע. את המשפט היסודי של האלגברה כן מציגים (לפחות בספר הלימוד של בני גורן). |
|
||||
|
||||
אני אענה לך אם תשאל עוד פעם, אבל לפני כן - הבנת שאני חושב שלא כדאי להכניס את המספרים המרוכבים לבגרות במתמטיקה, נכון? |
|
||||
|
||||
כן. אבל אם כבר היית מכניס אותם, אילו דוגמאות היית מביא? |
|
||||
|
||||
אני הייתי מראה איך זהויות טריגונומטריות נהיות יותר פשוטות ככה. |
|
||||
|
||||
בינתיים נתקלתי בהם רק בקורסים באלגברה ליניארית. חשבתי שאני זוכר שימוש בהם לחישוב מהיר של מספרי פיבונאצ'י (אתה יודע, עם המטריצה [1,1,1,0] שאתה מעלה בחזקה הרצויה ואז לוקח את המספרים ש... לא על האלכסון? לא זוכר), אבל טעיתי - הערכים העצמיים המעורבים הם ממשיים אי-רציונליים. חפרתי עוד בזכרון, ואחר כך גם הצצתי בספרים, אבל לא מצאתי איזשהו שימוש. 1. למה זה מביך אותי? 2. לאן חתרת? 3. בנפרד מהקודמות - לך יש שימושים להציע? |
|
||||
|
||||
אני זוכר שבלינארית הייתה מטריצה מהסוג שאתה מדבר עליו, אבל לא הבנתי ממש מה הם עשו שם וזה היה די מסובך. בסמסטר הבא למדתי קומבינטוריקה והראו שם איך פותרים את נוסחת הנסיגה של פיבונאצ'י ומקבלים נוסחה סגורה עבורה. זה היה יפה. חתרתי לזה שלא פשוט להציג דוגמאות ל"שימוש" במרוכבים (ובכלל, לא כל כך ברור מה זה "שימוש") מבלי להציג מספר נושאים מורכבים יותר. אין לי שימושים "פשוטים" לתלמידי בית ספר להציע, אבל אני לא חושב שזו סיבה לא ללמד מרוכבים. לדעתי מדובר בנושא יפה ולא קשה, וכדאי ללמד אותו - אבל בצורה שגם תסביר למה כל העסק חוקי (בעיקר צריך לשרש את האסון שקורה בכיתות הקודמות, שבו טוחנים לתלמידים את השכל שאין שורש למספר שלילי). עוד דבר שאולי כדאי לעשות הוא להציג את נוסחת אוילר, למרות שאין סיכוי להוכיח אותה בתיכון. זה גם יחסוך מהתלמידים התענות עם cis, זה גם יפה, וזה גם (כפי שהוצע קודם) מאפשר להבין יותר טוב את הנוסחאות הטריגונומטריות. |
|
||||
|
||||
|
||||
|
||||
cis(x) הוא קיצור של cos(x)+isin(x). |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |