|
||||
|
||||
"שתי הקבוצות הן בעלות אינסוף איברים, אם כי מבחינת המספרים עצמם בסדרה הראשונה קבוצת האורכים חסומה, ובסדרה השנייה לא." לא נכון. הקבוצה הראשונה היא אינטרפולציה לא-חסומה (אינסופית). הקבוצה השניה היא אקסטרפולציה לא-חסומה (אינסופית). הקטע הרלוונטי הקשור לעיל מתגובה 342874 :ההפכים המכוננים של המחקר שלי הם רצף במובנו המקורי כאלמנט לא-ריק שאינו מכיל בתחומו שום תת-אלמנטים, וריקנות אשר כמובן לא מכילה שום תת-אלמנטים. רצף מוחלט וריקנות מוחלטת הם מצבים עצמאיים-הדדית (שאינם נגזרים זה מזה) ומרחב הגישור ביניהם הוא סינתיזה שבין אלמנט רציף ולא-לוקלי כמו קטע, ובין אלמנט בדיד ולוקלי כמו נקודה. הגישור בין הלוקלי והלא-לוקלי מאפשר חקירת מגוון המצבים שבין מקביליות (סופרפוזיציה) לסידרתיות. מתוך מחקר זה עולה, כי המתמטיקה-העכשווית מבוססת רק ואך ורק על הגישה הסדרתית המסתמכת על אוספים של אלמנטים לוקליים בלבד, כאשר אלמנטים אלה מתקיימים או בתוך האוסף {.} או מחוץ לאוסף .{}, כתוצאה מתכונת הלוקליות המובנית שלהם. עבודתי החוקרת את גישור שבין הלוקלי ללא-לוקלי, כוללת במסגרתה גם את האלמנט הלא-לוקלי המתקיים סימולטנית בתוך ומחוץ לאוסף _{_}. בכך משתנה מן היסוד מושג מכונן של המתמטיקה-המודרנית, והוא מושג השייכות, והשינוי מתבטא כבר ברמה הלוגית, שהופכת מלוגיקת סתירה בין הפכים ללוגיקת סינתיזה בין הפכים. ההבחנה הקטגורית שבין רצף לבדידיות משנה מן היסוד את הבנת מושג האינסוף, כי עתה קיימים שניי מצבי-יסוד לאינסוף שהם: א) אינסוף מוחלט, המייוצג באופן מינימלי ע"י קו רציף ללא התחלה וללא סוף. ב) אינסוף יחסי, המבוסס על המושג "הרבה..." ומיוצג ע"י אוסף של אלמנטים הקיימים על פניי אינסוף רמות של אינטרפולציה ואקסטרפולציה תלויי קנה-מידה, אשר אין בכוחם להשיג את האינסוף המוחלט. אי-יכולת השגה זו מאפשרת הבחנה קטגורית בין אוסף אינסופי אשר (אין לא קרדינל מדוייק) לאוסף סופי, אשר יש לו קרדינל מדוייק וקרדינל מדוייק זה קיים מכיוון שאוסף סופי אינו שואף להשיג את האינסוף המוחלט." |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |