|
||||
|
||||
" מערכות האקסיומות המעניינות נבנות ככה שילמדו אותנו משהו על מושגים שאנחנו מבינים באופן אינטואיטיבי." ואני בא וחושף כשלים מהותיים באינטואיציה זו, כגון: 1) כפיית אינטואיציות הנובעות מאוספים סופיים, על אוספים אינסופיים. 2) התעלמות ממצבי סינתיזה בין הפכים. 3) התעלמות מקיומו של אלמנט לא-לוקלי כמושג מכונן המשפיע על הבנתנו את מושג השייכות. 4) התעלמות מהחוקר עצמו, כגורם משפיע במרחב החקירה. 5) ניסיון להגדרת מקביליות באמצעי סדרתיים בלבד. 6) התעלמות מאי-וודאות ויתירות כמושגים מכוננים. 7) הסתמכות על שיטה דדוקטיבית בלבד. 8) התעלמות ממושג הסימטריה שמושג מכונן. |
|
||||
|
||||
0) למה אתה מתכוון כשאתה אומר "כשלים"? לאי-התאמה של האינטואיציה הזאת ל*מציאות*? כי אם כך, א. מי אמר שמבני ההיגיון שיש לנו אינטואיציה לגביהם עוסקים בחקר המציאות? ב. איזה ראיות (מלבד "תובנות") יש לכך שהמתמטיקה המונדית והאינטואיציה שלך טובות יותר לחקר המציאות מהמתמטיקה הרגילה? 1) כמו שכבר ציינתי הרבה יותר מפעם אחת, אני בכלל לא בטוח שקיימים אוספים אינסופיים ב"מציאות". אני חוקר את האוספים האינסופיים כפי שהם נתפסים על-ידי וע"י רוב בני האדם והמתמטיקאים בכללם (?). איך? אני מגדיר היטב כמה תכונות שלפי האינטואיציה שלי מתקיימות עבור אוספים אינסופיים, ובוחן "עד איפה אפשר להגיע עם זה". בפתיל כלשהו שעסק בהגדרת "עוקב" על אוספים אינסופיות הראיתי לך שגם אתה משליך בלי-משים תכונות מסויימות של אוספים סופיים על אוספים אינסופיים. פשוט בחרת בתכונות אחרות. נדמה לי שבחירת התכונות המקובלת היא האינטואיטיבית והמעניינת ביותר. 2-4,6,8) שוב, ה"כשל" שאתה מציג הוא אי התאמה ל"מציאות" כפי שאתה מבין אותה. 5) מי מנסה להגדיר מקביליות? האם אתה מתייחס לטענה מהצורה "לכל x מתקיים..." כטענה מקבילית? אם כן, אז יש לפחות פן אחד של המקביליות שאיתו המתמטיקה הסדרתית מסתדרת מצוין. 7) בניגוד ל"תובנות"? ולזה אתה קורא "כשל"? |
|
||||
|
||||
"בפתיל כלשהו שעסק בהגדרת "עוקב" על אוספים אינסופיות הראיתי לך שגם אתה משליך בלי-משים תכונות מסויימות של אוספים סופיים על אוספים אינסופיים." הצג נא את הדברים כדי שאוכל להגיב עליהם במדוייק. "מי אמר שמבני ההיגיון שיש לנו אינטואיציה לגביהם עוסקים בחקר המציאות?" לדידי גם המרחב המופשט הוא מציאות, או בהרחבה, כל דבר היכול להשפיע אלינו ועל גורל קיומנו הוא מציאות, ולכן אין שום תחום חוץ מציאותי אשר ניתן לעסוק בו במנותק לחלוטין מהשפעותיו עלינו. |
|
||||
|
||||
התכונה: באוסף לא ניתן להגדיר "עוקב" (כפי שהגדרתי אותו בתגובה 337401) כך שהאוסף יהיה סגור תחת העוקב. התייחסתי להשלכה שלך בתגובה 337371. יש לציין שהפתיל ההוא עסק ב-ZF ושאתה ניסית להשתמש בו בטיעונים של קנטור. לגבי האינטואיציה: אז איזה כשל יכול להיות באינטואיציה *שלי* לגבי מבני ההיגיון *שלי*? ואיך *אתה* יכול להתיימר לתקן את הכשל? |
|
||||
|
||||
הינה תגובתך: "לא, העוקב חורג מכל קבוצה חלקית סופית של האוסף. או ליתר דיוק: בכל קבוצה חלקית סופית של האוסף, קיים איבר שהעוקב שלו אינו איבר בקבוצה. זו ה"הפרדה הקטגורית" (לפחות הגדרה אפשרית אחת) בין קבוצות סופיות לקבוצות אינסופיות: בקבוצה סופית לא ניתן להגדיר "עוקב" לכל איבר, ובקבוצה אינסופית אפשר. חבל שאתה לוקח תכונות שמתקיימות עבור קבוצות סופיות, ומניח אותן אוטומטית עבור קבוצות אינסופיות. ככה אתה מגיע לתוצאות שגויות." תשובתי לכך נמצאת בתגובה 342686 וניתן להוסיף לה גם את בתגובה 345451 . משתייהן *בחרת להתעלם* עד כה. |
|
||||
|
||||
"האם אתה מתייחס לטענה מהצורה "לכל x מתקיים..." כטענה מקבילית?" לא, יש כאן צורה סדרתית, כי מדובר על קימומה של תכונה מובחנת היטב (שאין בה יתירות או אי-וודאות) לכל x לחוד. |
|
||||
|
||||
אם כך: 5) מי מנסה להגדיר מקביליות? ממתי המתמטיקה הרגילה מנסה להגדיר מקביליות? |
|
||||
|
||||
ממתי המתמטיקה היא ישות עצמאית המנותקת מיוצרה? |
|
||||
|
||||
5) מי מנסה להגדיר מקביליות? ממתי המתמטיקאים הרגילים מנסים להגדיר מקביליות? |
|
||||
|
||||
תשובתי לשאלתך ניתנת במלואה בתגובה 345546 . |
|
||||
|
||||
איך התגובה הזאת מראה שהמתמטיקאים רוצים להגדיר מקביליות? |
|
||||
|
||||
כמו כן ההסבר *המדוייק* של מושג העוקב, נמצא ב-http://www.createforum.com/phpbb/viewtopic.php?t=45&... ואם תעיין בו ברצינות, תבחין בטעות המושגית שלך ביחס למושג העוקב. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |