|
||||
|
||||
קיימת היררכית תלות-קיום חד-משמעית במתמטיקה, שבה הרצף-המוחלט הינו הבסיס לכל אלמנט בר-חקירה, כאשר אלמנטים ברי-חקירה ממוינים מן הפשוט אל המורכב, כאשר המורכב תלוי בקיומו של הפשוט, אך הפשוט אינו תלויי בקיומו של המורכב, לדוגמא: הוכחת תלות-הקיום של קבוצה מורכבת בקבוצה לא-מורכבת: אלמנטרי (הגדרה): ישות יסודית, שאי-קיומה מונע את קיומם של אלמנטים המורכבים ממנה (תרתי משמע). ועכשיו דוגמאות והסברים: טענה 1: אם {} לא קיימת, אז {{}} בהכרח לא קיימת. הוכחה לטענה 1: אם {} אינה קיימת ב-{{}} אז {{}} אינו אלא {}, אך {} לא קיימת לכן {{}} אינה יכולה להתקיים ללא {} כאלמנט יסוד שלה. טענה 2: אם {{}} לא קיימת , לא נובע בהכרח ש-{} לא קיימת. הוכחה לטענה 2: אם אנו מסירים את הסוגריים החיצוניים של {}, {{}} קיימת, ולכן קיום {} אינו תלוי בקיום {{}}. מסקנה: {} הינה קבוצה אלמנטרית ואילו {{}} הינה קבוצה מורכבת |
|
||||
|
||||
תיקון לתגובה קודמת: טענה 2: אם {{}} לא קיימת , לא נובע בהכרח ש-{} לא קיימת. הוכחה לטענה 2: אם אנו מסירים את הסוגריים החיצוניים של {{}}, {} קיימת, ולכן קיום {} אינו תלוי בקיום {{}}. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |