|
||||
|
||||
אני מקווה לא להחשב לטרחן בעצמי, אבל הוכחות כאלה יכולות להרוס את כל האינדוקרינציה1 של תלמידי אינפי נגד הוכחות בנפנופי ידיים. יש שתי אפשרויות. הראשונה היא *להגדיר* זווית במונחי שטח, ואז ההוכחה של הגבול sin(x)/x מיידית, אבל נדמה לי שזה לא יגמר בטוב (לא בדקתי עד הסוף). אם מגדירים זווית לפי אורך הקשת במעגל היחידה, אז באמת מוכרחים להשוות את הקשת לקטעים. הצרה היא שאנחנו יודעים מתי הקשת ארוכה מסכום של קטעים (אם הם מחברים נקודות על הקשת - קו ישר הוא הדרך הקצרה ביותר וגו'), אבל אין שום דרך לחסום את אורך הקשת מלמעלה. לפי השוואה בין הקשת למיתר רואים ש- sin(x)<x. אם חוצים את הזווית, מתקבל גם 2sin(x/2)<x, ובאותו אופן N*sin(x/N)<x לכל N שלם. מצד שני, "רואים" שהקו השבור באגף שמאל "שואף" לקשת (אפשר להסיר את המרכאות אחרי שמגדירים שאיפה של קוים לעקומה), ולכן הגבול של (N*sin(x/N, כאשר N שואף לאינסוף, הוא x. מכאן שהיחס (sin(x/N)/(x/N שואף ל-1. זה בערך מה שרצינו (אם רוצים שאיפה של פונקציה ולא של סדרה, צריך לעבוד עוד קצת). (הויתור על השוואת שטחים נראה כמו בזבוז של נימוק מצויין, אבל אני לא בטוח שיש דרך טובה יותר). 1 בכוונה, אלא מה. |
|
||||
|
||||
1) תוכל לתת לי ספר שבו רואים שהקו השבור באגף שמאל שואף לקשת, ולא רק "רואים" שהקו השבור באגף שמאל "שואף" לקשת? 2) האם כל מי שמשתמש בהוכחה מבוססת השטחים (=למשל, הספר של בן ציון קון שהוא הטקסט הבסיסי לתלמידי החדו"א בטכניון, וההרצאה המצולמת של חדו"א בטכניון) בעצם "מרמה" ועושה משהו מעגלי? |
|
||||
|
||||
וואו. נוסטלגיה. הספר שהשביע את רצוני בסופו של דבר היה Calculus של Moise, בהמלצת אחד הפרופסורים בפקולטה. |
|
||||
|
||||
ואיך הוא עושה את זה? |
|
||||
|
||||
הוא מציג את העניין עם הקו בצורה די מפורטת עם גלישה לגאומטריה, ולא משתמש שם בגבולות אלא באי שוויונות; ובמקום אחר הוא גם מוכיח ששטח עיגול היחידה הוא פאי בלי להשתמש בגבול ההוא. |
|
||||
|
||||
האמת ש"אפשר להסיר את המרכאות אחרי שמגדירים שאיפה של קוים לעקומה" זה גם מה שאני ניסיתי לומר, אבל באופן פחות ברור. אני בכל זאת רואה יתרון לנתיב של השטחים, והוא האפשרות להפריד את תהליך המיצוי מתהליך השאיפה של הזווית ל-0. בעיני זה יותר ברור: קודם מראים קשר בין שטח גזרה לאורך קשת (לכל זווית, קטנה כגדולה), ואח"כ השאלה של sin(x)/x כש-x שואף ל-0 נהיית קלה מאוד. |
|
||||
|
||||
הי עוזי, אני מאמין, כי ראש ממשלתנו מתחבט היום הרבה בשאלה המתמטית בנושא ויתור של השטחים. לאחרונה ידיד שלי שעובד בפרוייקט של הכנות למבחני בגרות באמצעות האינטרנט, שאל אותי איך להגדיר זווית. הוא ציטט אחד מספרי ההכנה ( 3 יחידות) שם נכתבה ההגדרה הבאה : "הסיבוב בין שני קרניים היוצאות מנקודה אחת" הוא לא היה שבע רצון, ובצדק מהגדרה זו ולכן הוא ביקש מממני להגדיר זווית .ערכתי מיד את ההגדרה של אותו ספר ל : מידת הסיבוב בין שתי קטעים הפוגשים נקודה" אבל בהחלט אני עדיין רחוק מלהיות שבע רצון ממהגדרה שנתתי למושג הזווית. ראשית יש להבחין בין המושג עצמו למידה המספרית שלו. |
|
||||
|
||||
שאלה מצויינת. עוזי, אני מציע שתכתוב את התשובה שלך כאן: |
|
||||
|
||||
אם הבנתי נכון, זוית מוגדרת בתור אורך הקשת במעגל היחידה. קל להוכיח שהיא גם היחס בין אורך הקשת לרדיוס בכל מעגל. |
|
||||
|
||||
הגדרת רדיאן (יחידת מידה לזווית), לא זווית. שים לב: "אורך הקשת במעגל היחידה" - איזו קשת? יש הרבה. מה מבדיל בין הקשתות השונות? |
|
||||
|
||||
האורך הוא מה שמבדיל ביניהן, ואני לא רואה למה הוא לא יכול לשמש להגדרה של זוית. אם אתה מתכוון להרבה קשתות באותו אורך, הרה כל אחת מהן מגדירה אותה זוית. |
|
||||
|
||||
אני לא אומר שאי אפשר, רק שחסר לך משהו בדרך. למשל, לפי ההגדרה הנוכחית שלך לא ברור מה הכוונה במשפט ''סכום הזוויות במשולש הוא פאי''. בתרגום מילולי מההגדרה שנתת המשפט הזה הופך ל-''סכום אורכי הקשתות במעגל היחידה במשולש הוא פאי''. |
|
||||
|
||||
אני בכ''ז לא רואה מה הבעיה. אחרי שתציב בחזרה ''זוית'' במקום ''אורכי הקשתות במעגל היחידה'' עפ''י ההגדרה קיבלנו את מה שרצית. המשפט הביזארי שרשמת לא שונה ממה שיקרה להרבה משפטים כאשר תיתעקש לשבץ בתוכם את ההגדרות של כל המונחים שהשתמשת בהם. |
|
||||
|
||||
ההבדל הוא שבאותם משפטים אני מבין מספיק מה המושג שעליו מדברים כדי לשבץ אותו בחזרה בצורה סבירה. במקרה הזה אני לא מבין איך ''זווית'' באה לידי ביטוי בצורות שבהן אין לנו מעגל (בפרט, אני לא רואה מה הקשר בין ''זווית'' שהיא משהו ש''יש בין שני ישרים נחתכים'' ובין המושג שאתה הגדרת, אם אני מסתכל רק על ההגדרה שלך) |
|
||||
|
||||
ואני לא רואה את הקשר בין סינוס לבין משולשים שאינם ישרי זוית. אומרים לי שאני יכול לבנות משולש ישר זוית כרצוני בכל פעם שאני נתקל בזוית כלשהי של איזה משולש כדי להזכר איפה מתחבא שם הסינוס שהוגדר במשי''ז ואני אומר לך באותו אופן לשרטט קשת בין אותם ישרים נחתכים כדי להזכיר לך מה זה זוית. תשים לב שזה מה שאתה עושה בלאו הכי כדי לסמן זוית ככה שיש לך יתרון על פני. |
|
||||
|
||||
מילת המפתח כאן היא בדיוק זו: "בנייה". בהנתן שתי קרניים שנפגשות בנקודה, ניתן לבנות מעגל ברדיוס 1 שמרכזו באותה נקודה, למצוא את שתי נקודות החיתוך של הקרניים עם המעגל, ואת אורך הקשת שביניהם. אורך זה ייקרא ה"זווית" (ברדיאנים) שבין שתי הקרניים. |
|
||||
|
||||
זה מה שאמרתי. |
|
||||
|
||||
נכון. רק רציתי לנסח את זה באופן מדויק יותר. אני מאמין שבניית המעגל זה השלב שהיה חסר לגדי בהגדרה שלך. |
|
||||
|
||||
שתי ההגדרות בעייתיות למדי. הראשונה צ"ל "הסיבוב בין *שתי* קרניים היוצאות מנקודה אחת". השנייה צ"ל "מידת הסיבוב בין *שני* קטעים הפוגשים נקודה". אני מודה שגם כך מעלותיהן מוטלות בספק. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |