|
||||
|
||||
אכן, אבל טענה לפיה משהו קיים גם בלי שנגדיר אותו מדיפה, כאמור, ניחוח של פלטוניזם, כשאותו ''משהו'' הוא לא אובייקט פיזיקלי או דבר מה דומה, אלא מושג מתמטי לחלוטין. |
|
||||
|
||||
לא תמיד. למשל ברור שקיימים מספרים ראשוניים (למשל ב-PA) גם בלי שנגדיר "מספר ראשוני". נדמה לי שה-"בעיה" כאן טמונה בשאלה למה מתייחס הכמת "לכל". אם הוא מתייחס באמת "להכל" אז ברור שבמשפט כמו "לכל x, x אינו ב-A" אז x מתייחס גם ל-A. אבל נראה לי שזו גישה בלתי סבירה (במובן מסויים, היא מניחה גם את קיומה של קבוצה-לגמרי-אוניברסלית, שכידוע, אינה יכולה להיות מוגדרת היטב - וגם את אקסיומת הבחירה). כנראה ש-"לכל" מתייחס לכל מה שאפשר לנסח בשפה ולהוכיח את קיומו בעזרת האקסיומות (כולן, בדיעבד) - כלומר לכל מה שקיים בתורה. אני לא חושב שיש כאן בעיה של מעגליות, ופלטוניזם אינו נחוץ לצורך העניין. |
|
||||
|
||||
יודע מה? אני די משוכנע עד שיבוא הצד השני ויביא טיעונים משכנעים משל עצמו. אני בטוח שנצטרך לחכות מעט מאוד... |
|
||||
|
||||
"לא תמיד. למשל ברור שקיימים מספרים ראשוניים (למשל ב-PA) גם בלי שנגדיר "מספר ראשוני"." ברור למי? מי הוא זה שברור *לו* שיש מספרים ראשוניים מבלי ש*הוא* מגדיר אותם? הרי זו הנחה סמויה אפלטוניסטית לעילא ולעילא. כפי שכבר הסברתי, רק מצבים מוחלטים כמו מלאות מוחלטת או ריקנות מוחלטת, יש בהם את הפשטות שמעבר לצורך שלנו להגדיר אותם. כל שאר המצבים המופשטים תלויים בהגדרות של תודעתנו, ואם הם אינם מוגדרים אז כל מה שיש זה המוחלט בכבודו ובעצמו, שקיומו נובע מעצמו ללא כל תלות בשאינו עצמו. |
|
||||
|
||||
''הרי זו הנחה סמויה אפלטוניסטית לעילא ולעילא.'' זאת הפעם הראשונה שאתה טוען להנחה סמויה פלטוניסטית, ואני מסכים איתך. עם זאת, יש לציין שאין חילוקי דעות בין פורמליסטים ופלטוניסטים לגבי הדרך שבה עוסקים במתמטיקה. השאלה היא שאלה פילוסופית תיאורטית לחלוטין, על המשמעות שנותנים למשפטים לאחר שהוכחו. (במילים אחרות, העובדה שזו הנחה סמויה לא מוכיחה את הטענה ''במתמטיקה יש הנחות סמויות''.) ''רק מצבים מוחלטים כמו מלאות מוחלטת או ריקנות מוחלטת, יש בהם את הפשטות שמעבר לצורך שלנו להגדיר אותם.'' לא שכנעת אותי בזה. |
|
||||
|
||||
"לא שכנעת אותי בזה." אין לי שום צורך או רצון לכפות עליך את דעתי. כל מה שאני עושה הוא לשתף אחרים ברעיונותי. כמו שאומרים בבדיחה המפורסמת:"ירצו יאכלו, לא ירצו לא יאכלו". |
|
||||
|
||||
לכפות? לא דיברתי על כפייה. דיברתי על שכנוע. והסיבה שלא שכנעת אותי בזה היא כנראה כי אין לך טיעון משכנע להצדקת הטענה שלך. |
|
||||
|
||||
"והסיבה שלא שכנעת אותי בזה היא כנראה כי אין לך טיעון משכנע להצדקת הטענה שלך." פשטות שאין פשוט ממנה כמו ריקנות מוחלטת או מלאות מוחלטת, אינה משכנעת אותך? תמהני מה לא משכנע בתגובה 334032 ונספחיה. |
|
||||
|
||||
דווקא לזה אתה מסכים? ואני לחלוטין מתנגד... נניח שאנחנו מגדירים את המספרים בעזרת PA. קיבלנו קבוצה של מספרים שאפשר לכפול, לחלק עם שארית וכו'. אנחנו לא מדברים על זה שאולי קיימים מספרים שמתחלקים רק בעצמם וב-1 ובטח שלא מגדירים אותם. האם זה אומר שהם לא קיימים בקבוצה שאנחנו עובדים איתה ושהגדרנו בעזרת PA? בטח שהם קיימים. זה בדיוק כאילו שנעבוד עם המספרים השלמים ופעולת החיבור ולא נקרא לאפס "איבר יחידה". זה אומר שאין במספרים השלמים איבר יחידה, כי לא הגדרנו אותו? בטח שיש. |
|
||||
|
||||
לא "בלי" שנגדיר אותו. *לפני* שנגדיר אותו. |
|
||||
|
||||
יש הבדל? אם משהו קיים לפני שאנחנו מגדירים אותו, אז גם אם נחליט "ברגע האחרון" שאנחנו לא מגדירים אותו, הוא עדיין יהיה קיים. |
|
||||
|
||||
''הוא עדיין יהיה קיים.'' אבל זה בדיוק הפלטוניזם. |
|
||||
|
||||
לא נראה לי. בוא ניקח את המספרים השלמים עם פעולת החיבור. גם לפני שאנחנו מדברים על ''איבר נייטרלי'' קיים כזה - אפס. מה שלא קיים הוא השם שאנחנו נותנים לו (''איבר נייטרלי'') ומתייחס לתכונות שלו. גם בלי שניתן לו שם בהתבסס על התכונות הללו, האיבר עדיין יהיה קיים והתכונות שלו עדיין יתקיימו (תחבר כל מספר איתו ותקבל את המספר). |
|
||||
|
||||
או.קיי, אנחנו צריכים להקפיד להבחין בין שתי פעולות שונות שאנחנו עושים. "הגדרה", כמו של יחידת החיבור, ו"אקסיומת קיום + הגדרה" כמו של הקבוצה הריקה. פורמלית, אנחנו יכולים להסתדר בלי הגדרות בכלל. זה פשוט יסבך לנו את החיים בצורה יוצאת-דופן. גם אם לא נגדיר "יחידה", נוכל להוכיח על המספרים השלמים שקיים e כך שלכל a מתקיים: e+a=a+e=a. לעומת זאת, אם ננסה להסתדר בלי _אקסיומת הקיום_ של מה שאנו עתידים לכנות "הקבוצה הריקה", נקבל מערכת שבה (כנראה) הרבה משפטים מהמערכת שלנו יהיו בלתי-כריעים. (אכן, טעיתי בסיווג המספרים הראשוניים. זאת רק הגדרה. מעתה נצטרך לזכור שהדיון כולו הוא על אקסיומות קיום, ולא על הגדרות.) |
|
||||
|
||||
אם אתה מסכים איתי שיש הבדל בין "אקסיומת קיום" כמו זו שבה אומרים "בחבורה קיים איבר שנסמנו e והוא מקיים..." ובין אקסיומת הקיום "קיימת קבוצה שלא מכילה אף איבר ונקרא לה הקבוצה הריקה" דיינו. |
|
||||
|
||||
לא, אני לא רואה הבדל בין שתי האקסיומות שהצגת. אם במקום האקסיומה הראשונה שכתבת היית כותב "קיים *מספר שלם* שנסמנו 0 והוא מקיים..." אז אכן הייתי רואה הבדל, כי זו אינה אקסיומת קיום, אלא משפט קיום. (בכל מקרה, התעלמתי מהמילים "ונקרא לה הקבוצה הריקה" ו"שנסמנו", כי אלה הגדרות, ולא חלק מהטענה.) |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |