|
||||
|
||||
"ד) הכמות של אוסף אינסופי של אלמנטים מובחנים חייבת להיות לא ידועה, כי אם היא ידועה היטב, הריי היא בהכרח אוסף סופי." זו טענה מעגלית מובהקת, אלא אם יש הבדל טכני שאני לא מודע לו בין "ידועה" לבין "ידועה היטב". אגב, אפשר לפשט קצת את התסבוכת סביב מושג ה"עוצמה" אם מסכימים שאין כזה דבר בכלל (ברצינות). במקום להגיד "העוצמה של קבוצה A היא ...", נסתפק ב*השוואה* של עוצמות: "העוצמות של A ושל B שוות זו לזו אם ...", "העוצמה של A גדולה מזו של B אם ...". אחרי שרוכשים נסיון בכיוון הזה, אפשר להרשות גם מינוח מהסוג הראשון (בתנאי שזוכרים שאין לו משמעות). |
|
||||
|
||||
אני זוכר שכשלמדתי תורת הקבוצות חשבתי על "עוצמה" בדרך שאתה מתאר כאן, ואחר כך מישהו (מרצה?) אמר לי שלעוצמות יש קיום עצמאי כלשהו. יש משמעות? |
|
||||
|
||||
בדרך כלל, מגדירים את המונים להיות הסודרים שאינה שקולים (העתקה חח''ע ועל) לסודר קטן מהם. העוצמה של קבוצה מוגדרת להיות המונה השקול לה. יש לזה חשיבות כשאתה רוצה להוכיח שכל שתי עוצמות ניתנות להשוואה. |
|
||||
|
||||
לניסוח הזה של "מוגדרת להיות" (במקום, למשל, "מוגדרת בתור") יש איזו משמעות מיוחדת? |
|
||||
|
||||
לא. "מוגדרים להיות"=="מוגדרים בתור". |
|
||||
|
||||
מבחינה אתסטית-עברית, עדיף בעיני על שניהם ''מוגדרים כ-''. אולי קצת בעייתי בטקסט לא מנוקד כשהמלה הבאה מיודעת (כמו כאן). |
|
||||
|
||||
זה שוב אותו משחק. ה"אמת" היא שיש משמעות לעוצמה של קבוצה (=הסודר הקטן ביותר בעל אותה עוצמה (שימו לב לחוסר המעגליות של ההגדרה!), כפי שאורי הסביר). אבל בשלב מוקדם יותר בלימוד הנושא, אפשר להסתדר מצויין גם בלי העניין הזה. |
|
||||
|
||||
נהדר. העברת את הבעיה מבעיה של להבין מה זה עוצמות, ששייכות לשלב שבו עוד הקשבתי בהרצאה, לבעיה של להבין מה זה סודרים, ששייכים לשלב שבו אפילו המרצה כבר לא הקשיב. |
|
||||
|
||||
לא נכון - פתרתי אותך לגמרי מהצורך ''להבין מה זה עוצמות''. למי שאיננו מתעסק בתורת הקבוצות מספיק בדרך כלל ''להבין מתי שתי עוצמות שוות זו לזו'' (וזה הרבה יותר פשוט). |
|
||||
|
||||
כן, אבל אני דווקא רוצה לדעת מה זה עוצמות (טוב, עכשיו אני יותר רוצה לדעת מה זה סודרים, ולא לקרוא את קונווי בשביל זה) |
|
||||
|
||||
אתה תמיד יכול להתחיל כאן: לשאול את דרכך משם. |
|
||||
|
||||
(שכר לימוד: אתה צריך לתרגם את הערך לעברית). |
|
||||
|
||||
הערך כבר קיים בעברית: |
|
||||
|
||||
"זו טענה מעגלית מובהקת, אלא אם יש הבדל טכני שאני לא מודע לו בין "ידועה" לבין "ידועה היטב". ידועה היטב, זה אומר שיש לא ערך חדמשמעי וקבוע כמו לקרדינל של קבוצה סופית. מושג הקרדינל בשיטתי פותח אפשרויות מחקר רבות לאין ערוך בין קבוצות אין סופיות, מאשר שיטת המיפוי המקובלת, לדוגמא: Let @ be |N|-Successor
If A = @ and B = @-2^@, then A > B by 2^@, where both A and B are collections of infinitely many elements. Also 3^@ > 2^@ > @ > @-1 etc. So as we can see, in my universe I have both non-finite collections and unique arithmetic between non-finite collections, which its result is always a non-finite collection. My results are richer than the Cantorean transfinite universe, for example: By Cantor aleph0 = aleph0+1 , by me @+1 > @ . By Cantor aleph0<2^aleph0 , by me @<2^@ . By Cantor aleph0-2^aleph0 is undefined, by me @-2^@ < @ . By Cantor 3^aleph0 = 2^aleph0 > aleph0 and aleph0-1 is problematic. By me 3^@ > 2^@ > @ > @-1 etc. |{{1,1,…}+1, 1,1,1}| > |{{1,1,…}+1}| by |{1,1,1}|. |{{1,1,…}+1,{1,1,…}+1}| = |{{1},{1}}|•@ > |{{1,1,…}+1}| by |{1}|•@ and |{{{1,1,…}+1, 1,1,…}+1}| = |{{1},1}|•@ > |{{1,1,…}+1}| by |{1}|•@ but they have different internal structures ( {{1},{1}} and {{1},1} ). For further information, please read http://www.geocities.com/complementarytheory/Success... . |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |