|
||||
|
||||
יש הוכחה מלאה לאי-האלגבריות של פאי בספר Proofs from the Book. היא לא פשוטה, אבל היא "פשוטה". |
|
||||
|
||||
זה משעשע שאתה מתייחס להוכחות מהספר "Proofs from the Book". זה היה יותר משעשע אם היית מתייחס להוכחות מהספר "Proofs NOT form the Book". |
|
||||
|
||||
"The Book" - הכוונה כמובן לספר שעליו דיבר ארדש? |
|
||||
|
||||
כן (אבל ראה תגובה 327370). |
|
||||
|
||||
"היא לא פשוטה, אבל היא "פשוטה"." מה זה? |
|
||||
|
||||
מן הסתם הכוונה היא שההוכחה אלמנטרית (לא מצריכה שימוש בתאוריות מתמטיות מורכבות) אבל אינה פשוטה. |
|
||||
|
||||
לדעתי הכוונה להגדרה "פשוטה" מתגובה 327300. |
|
||||
|
||||
זה הינו הך (''בלי ידע בכלל בחבורות, קבוצות, אידיאלים ודברים כאלו''). |
|
||||
|
||||
אלון השתמש בחינניות בעובדה שהשתמשתי פעמיים במלה ''פשוטה'' בתגובה שלי - האחת בלי מרכאות והשניה עם מרכאות. פשוטה במרכאות היא מה שפרטתי לאחר מכן, פשוטה ללא מרכאות היא פשוטה ממש. לאלון - אחפש את הספר בהקדם באוניברסיטה הקרובה למקום מגורי. תודה. |
|
||||
|
||||
אני מתנצל, טעיתי והטעיתי. בספר PftB יש רק הוכחה לכך שפאי (ולמעשה גם פאי בריבוע) הם אי-רציונליים. שלחתי את ההודעה בלי להביט בספר, והייתי הרבה יותר מדי אופטימי. הוכחה לכך שפאי הוא טרנסצנדנטי יש, למשל, בנספח 1 של הספר Algebra של Lang. ההוכחה הזו, אני חושש, כבר איננה אלמנטרית במובן שתיארת (דרושה קצת תורת השדות), וחוץ מזה היא גם לא פשוטה. |
|
||||
|
||||
(סליחה שאני מנדנד, אני מעוצבן מזה שטעיתי ומזה שאני מתחיל קצת לשכוח דברים שפעם ידעתי). יש הוכחה "פשוטה" לטרנסצנדנטיות של פאי ב-Introduction to the Theory of Numbers של Hardy & Wright, בסעיף 11.14. ההוכחה לא ארוכה, אבל היא כתובה באופן דחוס למדי; עם קצת סבלנות אפשר לעקוב אחריה לאט לאט ואולי להצליח ממש להבין "למה" זה נכון. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |