|
אני קצת מבולבל. הרבה יותר טוב ממה...? את הטענה "אם ZFC עקבית וגם הפתירות של f לא כריעה אז אין ל- f פתרון" אפשר לפשט למקרה הפרטי "אם ZFC לא מוכיחה של-f יש פתרון, אז ל-f אין פתרון". לא צריך את עקביות ZFC, אלא רק את העובדה שאם למשוואה דיופנטית יש פתרון אז ZFC מוכיחה זאת; זה נכון גם ל-PA, ובאותה מידה אפשר להוכיח ב-PA "אם PA לא מוכיחה ש-f פתירה, אז f אינה פתירה". (סייג כללי: אאל"ט).
אולי נחזור אחורה: התחלנו מהאבחנה שיש טענות אריתמטיות חוץ מעקביות ZFC שהן לא כריעות ב-ZFC; יש אפילו משוואות דיופנטיות כאלה - וקיומן הוא, נדמה לי, יותר מעניין מהוכחה מסוג זה למשוואה ספציפית. בעקבות זאת אני ניסיתי לטעון שהזיהוי של "יכיח-ב-ZFC" עם "נכון" הוא ממילא לא סביר, והוא נשאר לא סביר גם כשנזכרים שיש גם טענות יותר מורכבות (לא פאי-1-0) שאינן יכיחות. לגבי אלה, גם אני מודה שאנחנו נשארים די תקועים לגבי בירור המצב לאשורו; אבל אני בכל-זאת סבור שיש כזה מצב לאשורו, ואני מנסה להבין מדוע אתה סבור(?) שאין כזה.
|
|