|
||||
|
||||
בדיוק כפי שציינת, את האקסיומה "PA עקבית" אפשר לרשום באותו אופן גם ב-PA וגם בתורה שיש לה את אותה השפה של PA ואף לא אקסיומה אחת. ה"יכולת האריתמטית" קיימת ב*שפה* ברגע שיש בה את הסימנים המתאימים ("0", "+" וכו'). לכאורה, אפשר לקחת את הנוסחה (Con(PA כפי שהיא מופיעה ב-PA, ולהשאיר אותה לבד בלי אף אקסיומה אחרת, ולקבל את התורה שירדן דיבר עליה. הבעייה היא שאז יהיה קשה להגן על הטיעון שהתורה המנוונת הזו אכן אומרת משהו על עקביות PA, פשוט מפני שאין כל סיבה לפרש את הסימנים בשפה באופן הרגיל. כדי לעשות זאת, צריך (כמו שאמרת) את ה"יכולת האריתמטית" המינימלית, אבל זו תנבע מ*אקסיומות* נוספות שנשים שם, לא מהשפה. אם אני לא טועה, תורות אריתמטיות פשוטות יותר מ-PA (כמו פרסבורגר) מספיקות כדי שהפרשנות של הנוסחה (Con(PA במודל הסטנדרטי תהיה, באמת, ש-PA עקבית. |
|
||||
|
||||
אני בכלל לא בטוח שאתה צודק. לא ניתן לכתוב את con(PA) במערכת לא אריתנטית. בפרט, לא ניתן לכתוב את con(PA) במערכת אפקטיבית שלמה. ספציפית, בפרסבורגר אי אפשר לבצע את קידוד גדל הסטנדרטי כי אי אפשר להגיד מחלק, ראשוני וכו'. אף על פי כן, ניתן לבנות תורה חלקית ממש ל-PA + con(PA) שעדיין תוכיח את con(PA). לשם כך צריך פשוט להסתכל על תורה נוצרת סופית, ע"י ויתור על רוב אקסיומות האינדוקציה, שבה עדיין אפשר לבצע את קידוד גדל. ע"פ משפט הקומפקטיות, יש כזו1. טא דם! 1 בעצם לקחנו את כל המופעים של סכמת האינדוקציה שמופיעים בהוכחת משפט גדל. |
|
||||
|
||||
סילוק חלק מאקסיומות האינדוקציה היה המהלך הבא שלי - חשפת אותי! פרסבורגר הוא כנראה באמת חלש מדי. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |