|
||||
|
||||
אם הבנתי נכון, מרגע שאפשר להוכיח במערכת דבר ואת היפוכו, אפשר להוכיח בה כל דבר. לרוע המזל, אני לא זוכר איך טכנית עושים את זה בדיוק, אז נצטרך לחכות לאלון או לאחד המתמטיקאים האחרים. |
|
||||
|
||||
זה תלוי במערכת המדויקת בה עובדים. במערכת עם כלל היסק אחד (מודוס פונס) מקובל להניח את האקסיומה A->(~A->B) לכל A ו-B.אם הוכחת את A וגם את ~A שתי גזירות נותנות לך את B (לכל B שהוא). במערכות עם הרבה כללי גזירה (ובלי אקסיומות) יש בדרך כלל את הכלל A->B ' A->~B בשני המקרים, מדובר בעצם בהנחת המבוקש: מניחים שסתירה משמעה שאחת ההנחות שלך שגויה.---------------------- A אפשר לא להוסיף את האקסיומה/ כלל גזירה הנ"ל ולקבל תורות לא טריויאליות עם סתירה. אני לא יודע אם זה מענין או למה זה טוב. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |