|
||||
|
||||
"*שתי* שגיאות נפוצות נוספות הן הטענות "יש משפטים שבני־אדם *רואים שהם אמיתיים*, אבל תורות פורמליות לא יכולות להוכיח" ו"יש משפטים שבני־אדם רואים שהם אמיתיים, ומחשבים לא יוכלו לראות זאת לעולם"... האם יש באמת משפטים שאנחנו רואים שהם אמיתיים, אבל *אי־אפשר להוכיח אותם פורמלית*? כותב שורות אלה, אישית, משוכנע שאין;" מלכתחילה שאלתי על הטענה האחרונה שלך, שלמיטב הבנתי התייחסה ל"שגיאה" הראשונה שאתה מזכיר כאן, ואיננה מתייחסת למכונות כלל. האם לא די לי בלוקאס ובפנרוז, שעליי לסבול גם מכונות לא רצויות? או שכוונתך במשפט האחרון בציטוט היא ש"להוכיח פורמלית" פירושו "להוכיח בעזרת מכונות"? לא ברור העניין הזה. |
|
||||
|
||||
מה שאפשר להוכיח פורמלית, אפשר להוכיח ע"י מכונה, כן. איזה עניין לא ברור? (לא להתרגז, אני שואל בכנות, לא בכעס). |
|
||||
|
||||
(האלמונית מורטת כעת את שערה שלה בייאוש). האייל האלמוני (יום שישי, 15/07/2005 שעה 14:05) במאמרך מופיעה בפסקה הבאה: "שתי* שגיאות נפוצות נוספות הן הטענות "יש משפטים שבני־אדם *רואים שהם אמיתיים, אבל תורות פורמליות לא יכולות להוכיח" ו"יש משפטים שבני־אדם רואים שהם אמיתיים, ומחשבים לא יוכלו לראות זאת לעולם"... האם יש באמת משפטים שאנחנו רואים שהם אמיתיים, אבל אי־אפשר להוכיח אותם פורמלית? כותב שורות אלה, אישית, משוכנע שאין;". למיטב הבנתי, פירושה של הפסקה הוא: יש (בין היתר) *שתי* טענות שגויות ביחס למשפט גדל: 1. "יש משפטים שבני־אדם *רואים שהם אמיתיים, אבל תורות פורמליות לא יכולות להוכיח". 2. "יש משפטים שבני־אדם רואים שהם אמיתיים, ומחשבים לא יוכלו לראות זאת לעולם". אם הבנתי נכון, מדובר בשתי טענות *שונות*. אני מתייחסת לטענה מס' 1. כעת, בהמשך אתה אומר (טענה 3, לא שגויה כנראה): "האם יש באמת משפטים שאנחנו רואים שהם אמיתיים, אבל אי־אפשר להוכיח אותם פורמלית? כותב שורות אלה, אישית, משוכנע שאין;". כיוון שבטענה מס' 1 ובטענה מס' 3 אין מלה המרמזת על מכונות, למיטב הבנתי לא מדובר בהן על מכונות (האם אני טועה?). ומאותה סיבה, נדמה היה לי שטענה מס' 3 באה להפריך את טענה מס' 1. דהיינו (טענה שתכונה להלן טענה 4): "כל משפט שאנשים רואים שהוא אמיתי, ניתן להוכחה בתורות פורמליות." אם עד כאן טעיתי, אנא האר את עיניי. אם לא - אני מנסה להבין את טענה מס' 4, ושואלת: האם ברור לך שכל משפט שאנשים רואים שהוא אמתי הוא אכן אמתי? האם כל משפט אמתי יכיח בתורות פורמליות? |
|
||||
|
||||
אם ניתן להוכיח טענה פורמלית, אז גם מכונה יכולה להוכיח אותה, ולהפך. טענות 1,2,4 שקולות (וטענה 3, כמובן, הפוכה להן). |
|
||||
|
||||
לא התייחסתי כלל לטענה 2. וטענה 4 הפוכה מטענה 1. |
|
||||
|
||||
לי לא ברור שכל משפט שאנשים רואים שהוא אמיתי הוא אכן אמיתי. אפשר להיכנס כאן לדיון על מה זה "רואים" ומה זה "אמיתי", אבל הטענה המקורית שלי היא הרבה יותר פשוטה: אחרים - לוקאס, סרל, לא אני - טוענים שיש משפט פורמלי בתורת המספרים שאנו רואים שהוא נכון ומערכות פורמליות לא יכולות להוכיח. אילו היה זה נכון, זה היה טיעון מסקרן לגבי שאלת המוח האנושי, אבל זה לא. כל משפט אמיתי יכיח בתורה פורמלית, למשל בתורה שמניחה אותו כאקסיומה. השאלה האמיתית היא אם על משפט אמיתי יכיח בתורה שיש לנו סיבות טובות לקבל את הנחותיה כנכונות. זו בעייה פתוחה, וכנראה תישאר כזו כי "סיבות טובות לקבל" הוא מושג מאוד נזיל. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |