|
||||
|
||||
אני לא יודע כמה את\ה יודע\ת. אתן סקירה תמציתית. (אלון יוכל לענות על השאלה הזאת הרבה יותר טוב ממני, אבל אני אשמח לנסות את כוחי) סיגמה-פי, או PA, היא מערכת פורמאלית לוגית. זה אומר מערכת בעלת רשימה של אקסיומות וכלל היסק (מנוסחת בשפת הלוגיקה) שבעזרתם ניתן להוכיח משפטים. האקסיומות וההגדרות שספציפיות ל-PA מוכיחות משפטים מתחום האריתמטיקה על מספרים טבעיים. המתימטיקאי דייויד הילברט שאף לבנות מערכת לוגית שממספר סופי (או לפחות ניתן לחישוב) של אקסיומות תוכיח את כל המשפטים המתימטיים הנכונים. זה נקרא פרוגרמת הילברט. קורט גדל הוכיח שזה בלתי אפשרי ע"י שימוש בגרסה פורמאלית של פרדוקס השקרן. PA היא מערכת פורמאלית שמדברת על מספרים. לכל מספר בעולם יש שם ב-PA שמנוסח מהשמות והיחסים הבסיסיים שלה ומשפת הלוגיקה. גדל בנה דרך שבה אפשר לייצג את משפטי PA באמצעות מספרים. כך הוא יכול לדבר על משפטים של השפה מתוך משפטים אחרים של השפה. [לדוגמה: ניקח שלושה משפטים: "אם X אז Y" (מספרו 100); "X" (מספרו 101); ו-"Y" (מספרו 102). אני יכול לבנות משפט: "משפט 100 ומשפט 101 מהווים הוכחה למשפט 102". המשפט הזה הוא ב-PA והוא אומר לי משהו על PA ולא רק על מספרים. ] אח"ך גדל בנה את משפט G ב-PA כדלקמן: "למשפט G אין הוכחה ב-PA". שימ\\י לב שהמשפט מדבר על עצמו. בבירור אם המשפט הזה נכון אז PA לא יכולה להוכיח אותו. אם הוא לא נכון אז יש לו הוכחה ב-PA. וניתן להוכיח ש'למשפט G יש הוכחה ב-PA' (שזה שלילתו של G). כלומר PA מוכיחה גם אותו וגם את שלילתו והיא אינה עקבית. יוצא או ש: א. PA אינה שלמה מאחר שהיא לא מוכיחה את כל המשפטים הנכונים. או, ב. PA אינה עקבית מאחר שהיא מוכיחה דבר ושלילתו. מכאן ששום מערכת (שיכולה לדבר על עולם אינסופי כמו זה של המספרים הטבעיים) אינה גם עקבית וגם שלמה. מאחר שאלה היו תנאים להצלחתה של פרוגרמת הילברט, אפשר להגיד שהיא נכשלה. יש המון פולמוס סביב העניין הזה והפולמוסון בין אלון לביני כאן הוא רק הד לדיון מתמשך בין פילוסופים על המשמעות של משפט גדל וההשלכות הפילוסופיות שלו. (ואלון יתקן את הטעון תיקון, אני מקווה) |
|
||||
|
||||
G זה Godel (גדל), PA זה Peano Axioms או Peano arithmetic. |
|
||||
|
||||
בסה"כ זה לא רע :-) "הילברט שאף לבנות מערכת לוגית שממספר סופי (או לפחות ניתן לחישוב) של אקסיומות..." - סופיות מספר האקסיומות היא לגמרי לא העניין. הילברט שאף למצוא מערכת שתפרמל שיקולים "פיניטיסטיים", כלומר כאלה שאינם משתמשים באינסוף באופן מהותי. מה בדיוק עונה על הקריטריון "פיניטיסטי" לא הוגדר ולא הובהר מעולם; במובן זה, "תכנית הילברט" לא היתה אף-פעם מוגדרת היטב. "שום מערכת (שיכולה לדבר על עולם אינסופי כמו זה של המספרים הטבעיים) אינה גם עקבית וגם שלמה" - עמדנו כבר על כך שזה לא מדוייק. הדרישות הטכניות מתורה מתמטית המאפשרות להוכיח בה את משפט גדל הן טיפה יותר מסובכות מ"יכולה לדבר על עולם אינסופי"; בפרט, יש מערכות המדברות על עולמות אינסופיים (הטבעיים, הממשיים) שהן עקביות ושלמות, ומשפט גדל לא חל עליהן. "יש המון פולמוס סביב העניין הזה" - לא כל כך הרבה... :-) |
|
||||
|
||||
האם תוכל להגדיר למעני על אלה מערכות חל משפט גדל? |
|
||||
|
||||
תודה על התיקונים. אני מצטרף לשאלה שמעליי - על אילו מערכות לא חל משפט גדל? המון פולמוס: בכל זאת - פנרוז, לוקאס, צ'ייטין, פוטנאם, סרל, בנסרף, דאמט, פפרמן, נייגל, ראטיקינן ואפילו גדל וטיורינג עצמם. זה שראטיקינן מתייחס בזלזול לכל מי שטוען ההיפך ממנו (קראתי סוף-סוף את המאמר) לא אומר שאין על זה פולמוס. מה שמעניין הוא שהביקורת של ראטיקינן היא שמסקנותיהם של האנטי-מכאניסטים לא נובעות בצורה פורמאלית ממשפט גדל. הביקורת הזאת היא אמנם חזקה, אבל כשחושבים שהטענה שלהם היא שיש הבדל בין מה שניתן להוכיח במערכת פורמאלית לבין מה שניתן לדעת כאמיתי, זה מערער קצת את עוצמתה. (אם כי היא עדיין עומדת, כי צריך איזשהו מנגנון הוכחה). |
|
||||
|
||||
במאמר שאולי יתפרסם פעם אני אתייחס קצת לשאלה של אילו מערכות חשופות ולא חשופות למשפט גדל. בתור דוגמה למערכת הדנה בעולם אינסופי שהמשפט לא חל עליה, אני אזכיר (נדמה לי שכבר הזכרתי) את התורה של שדות סגורים-ממשית (Real-Closed Fields), שקל למצוא עליה חומר ברשת ובספרות. על כמה פולמוס זה המון פולמוס אין טעם להתווכח. "הטענה שלהם היא שיש הבדל בין מה שניתן להוכיח במערכת פורמאלית לבין מה שניתן לדעת כאמיתי" - איך הטענה הזו מערערת משהו מבלי שתהיה נכונה? |
|
||||
|
||||
מה זה "במאמר שאולי יתפרסם פעם"? הפסק לאיים ותתחיל לפרסם! |
|
||||
|
||||
כפי שציינתי, המאמר כבר נשלח להגהה. סבלנות. |
|
||||
|
||||
ניסוח פשוט מביש שלי, אין לי מושג אם התכוונתי להתבדח או שסתם התבלבלתי. בכל אופן, מה שהתכוונתי לומר הוא זה: אם הביקורת של האנטי-מכניסטים היא "שיש הבדל בין מה שניתן להוכיח במערכת פורמאלית לבין מה שניתן לדעת כאמיתי", אז זו טענה טריוויאלית שלא צריך בשבילה את גדל, וכבר עמדנו על כך כמה פעמים: השיטה הפורמלית רק מאפשרת לבחון מה ניתן לגזור מאוסף של אקסיומות. איך אנחנו יודעים שהאקסיומות אמיתיות? איך אתה יודע שהוכחה פשוטה באינדוקציה על הטבעיים היא אמיתית? יש לך הוכחה פורמלית לזה? השיטה הפורמלית לא נועדה לעזור לנו לדעת יותר דברים אמיתיים, להיפך: היא נועדה לעזור לנו לדעת פחות דברים שגויים. כדי לא ליפול בכל מיני פחים של האינטואיציה (בגיאומטריה של המישור, בתורת הקבוצות, בתורת המספרים, לא משנה), אנו משתדלים לנסח במדוייק מה אנו *מניחים* ואיך אנו *מסיקים*. זה הכל. האנטי-מכניסטים קופצים מכאן להנחת-הקש שהמכניסטים מאמינים שרק מה שיכיח פורמלית ניתן לידיעה, ואז מגייסים את גדל ומנסים להראות משהו. אין לזה שום בסיס. ממילא את האקסיומות במערכת פורמלית אנחנו *מניחים*, לא מוכיחים, אז מה רבותא? אני "יודע", במובן האנושי הרגיל, הרבה דברים שאין לי הוכחה פורמלית עבורם, ולא יכולה להיות לי (באיזו מערכת פורמלית בדיוק אני אמור להוכיח שאני נשוי, או שאני אוהב את הילדים שלי, או שלכל מספר טבעי יש עוקב שאיננו 0?). גם מחשב משוכלל מספיק יכול "לדעת" דברים באותו האופן בדיוק - כי הוא רכש ניסיון, חווה חוויות וכו'. מה לזה ולגדל או AIT? זו נקודה בסיסית שלא ברורה לי בכל הדיון הזה. |
|
||||
|
||||
אני חושב שהפער בין המכאניסטים לבין מתנגדיהם הרעיוניים הוא באמת בהבנה של מהו מכאניזם. אני לא בטוח שהמכאניסטים מבינים אותו יותר טוב. תמונת עולם מכאניסטית חולקת הרבה מאפיינים עם מערכת פורמאלית. העולם כולו נהיה מערכת של מצבים שמשתנים באופן צפוי בעקבות חוקים קבועים. לא ייתכן שמצב א' ישתנה גם למצב ב' וגם למצב לא-ב' באותו הזמן. כך שעל פניו המכאניזם הוא אפילו מערכת עקבית. משפט גדל מציע (אני כבר נזהר מלהגיד משהו יותר חזק) שמערכת כזו לא יכולה להיות שלמה. |
|
||||
|
||||
" לא ייתכן שמצב א' ישתנה גם למצב ב' וגם למצב לא-ב' באותו הזמן. כך שעל פניו המכאניזם הוא אפילו מערכת עקבית". אני לא רואה כל קשר בין שני המשפטים האלה. אפשר לבנות (בקלות) מערכת דטרמיניסטית אשר, נניח, תייצר שרשרת של טענות לא עקביות בלוגיקה. ואם, נניח, המכאניזם "הוא" אכן, באיזשהו מובן, מערכת עקבית, ואם, נניח, היא אכן לא שלמה - אז מה? |
|
||||
|
||||
לא יודע אז מה. אולי אז העולם אינו מכאניסטי? ואותו הדבר גם לגבי מודל מכאניסטי של הנפש? |
|
||||
|
||||
"אולי אז העולם אינו מכאניסטי?" למה? |
|
||||
|
||||
אם העולם מכאניסטי, איזו מערכת מתארת אותו? |
|
||||
|
||||
נניח שהעולם הוא מכונת-טיורינג גדולה (מאוד) ומהירה (מאוד). איזו מערכת דרושה כאן? מערכת אקסיומות? של מה? ומה שלא תהיה מערכת זו, אם אכן היא נחוצה, מה בכך אם היא לא שלמה במובן של לוגיקה מתמטית? |
|
||||
|
||||
בשביל לדבר על מכונת-טיורינג כזאת אתה נדרש למשהו שהוא כמו מערכת פורמאלית. הרי היא פועלת מתוך חוקיות מסוימת. אני לא מדבר עכשיו על המערכת הפורמאלית שהמ''ט הזאת מקבילה לה, אלא על הדרך שלך לתאר את המ''ט. אתה צריך להבין מה הקלט הראשוני ומה החוקיות של המ''ט העולמית הזאת, וזו מערכת פורמאלית עקבית. כלומר, אתה לעולם לא תוכל להגיע למודל שלם של העולם. אם תגיד לי שהעולם הוא אמנם מכאניסטי אבל שהאדם לא יוכל למדל אותו לגמרי, אז בסדר. זה שקול בעיניי ללהגיד שהוא לא מכאניסטי. |
|
||||
|
||||
לא, לא, לא ולא. אחרי כל הסיבובים שלנו אתה חוזר ל"זו מערכת פורמאלית עקבית. כלומר, אתה לעולם לא תוכל להגיע למודל שלם של העולם". למה, בשם אלוהים? עזוב את העולם, עזוב בני אדם, עזוב רוח ונפש והכל. דמיין שכל העולם הוא מיליון פיקסלים קטנים המהבהבים שחור-לבן פעם בשנייה. יש לך תיאור של העולם ה*זה* כמ"ט? נכון? המערכת-המתארת-את-המ"ט היא עקבית? נכון? אז היא לא שלמה? למה? איפה --->התנאים<--- של משפט גדל? ומה זה אומר לדעתך, שהמערכת לא מתארת את העולם המנוון ה*זה* באופן שלם? איך? מה חסר? הקוואליה של הפיקסלים? עכשיו תגיד, כן, אבל העולם שלנו מסובך יותר. בטח, אבל בכל הפסקה שלך לא השתמשת בשום תכונה של העולם - שום סיבוכיות, שום קוואנטים, שום בני-אדם, שום-כלום! אז איך אתה מדמיין שהוכחת משהו כל-כך גורף - *כל* תאור של *כל* דבר ע"י *כל* מ"ט הוא תמיד לא שלם? אפילו מ"ט אי-אפשר לתאר בשלמות עם מ"ט? מה יהיה? |
|
||||
|
||||
הערה מתודית: אלון, גבר, תירגע. עד עכשיו השיחה איתך הייתה נעימה ופורייה, חבל שזה ישתנה עכשיו. יש לך בעיה בסיסית בדיון - אתה מניח שבן-שיחך טוען את מה שהוא טוען מתוך חוסר הבנה. הבנתי טוב מאוד את כל מה שטענת כנגדי, קיבלתי הרבה מהביקורות וגם שיניתי או עידנתי כמה מעמדותיי בעקבות זאת. אבל אפילו אחרי שהבנתי את מה שאתה אומר, זה עדיין די ברור לי שהעולם אינו יכול להיות מכאניסטי ושמשפט גדל קשור לזה. זה נראה כאילו אתה מניח שאני לא יכול לחדש לך כלום. אולי זה נכון ואולי לא, אבל אתה לעולם לא תדע אם תניח את זה מראש. אני אגיד את זה פעם נוספת, בצורה הכי בהירה שיכולה להיות: הבנתי את כל הביקורות שלך כלפי השימושים השונים במשפט גדל. הבנתי, באמת, זה לא כ"ך מסובך. הביקורות שלך עומדות כנגד שימושים מסויימים, אבל לא כנגד כולם. אני בזאת מעביר את השיחה לדיון על המאמר שלך, אם זה בסדר מצדך. |
|
||||
|
||||
האם ההכרעה בין עולם מכניסטי ולא מכניסטי נופלת, לדעתך, רק על פי השאלה אם הוא מערכת עקבית ולא שלמה? |
|
||||
|
||||
העולם בעיניי אינו מערכת פורמאלית. הראייה המכאניסטית את העולם היא מערכת לא שלמה, ולעד תהיה כזאת. לכן אין שום טעם להתייחס לעולם כאל מכאניסטי אם לא ייתכן שנמצא מודל שלו. |
|
||||
|
||||
לא זו הייתה השאלה. אני ודאי חולקת על הראייה המכניסטית של העולם, אבל אני שואלת אם אתה שולל אותה *רק* מפני שלא ייתכן שנמצא מודל לעולם. |
|
||||
|
||||
אני פשוט לא רואה את העולם בצורה הזאת (או לפחות לא רק בצורה הזאת). יש הרבה דרכים טובות לראות את העולם והכי טוב זה לראות אותו בכמה דרכים בו-זמנית. יש לתפיסות מכאניסטיות ורציונאליסטיות הנטייה לשאוב אותך ולגרום לך להאמין שהן *האמת*. נראה לי חשוב להבין שיש בהן איזו אי-שלמות בסיסית. |
|
||||
|
||||
טוב, כנראה לא הצלחתי להבהיר את עצמי. נעזוב זה. |
|
||||
|
||||
דווקא מסקרן אותי מה ניסית להגיד. אז איך שבא לך. |
|
||||
|
||||
נראה לי שאתה (שוב) נלחם באנשי-קש. גם גדולי-המכניסטים (נגיד, אני) לא טוענים שאפשר יהיה להבין באיזשהו מובן את ההוייה האנושית אם נרשום את המשוואות המדוייקות של החלקיקים היסודיים ונשתכנע שהם מכתיבים חד-משמעית את תפקוד הנוירונים ואת מעשינו. אני בטוח שגם אם זה יקרה עוד ימשיכו להתווכח אם יש אלוהים ולמה אין אהבות שמחות. קח דוגמה קצת יותר פשוטה מ"העולם": כדור מתגלגל במישור. יש למצב הזה תיאור מכניסטי מוצלח מאוד, אבל הוא לא עוזר להבין "למה" יש דבר כזה, אינרציה, ולא את "חוויית הגלגול במישור". זה ברור לגמרי, ולי לא ברור למה צריך לגייס את גדל כדי להוכיח שהמודל של העולמצ'יק הזה או של העולם שלנו הוא לא "שלם". אתה סבור שלא ייתכן שנמצא "מודל" של כדור מתגלגל, או אוסצילטור הרמוני, או חלבון, או תא, או מוח? אם כל הדברים הללו מתנהגים על-פי כללים מכניים פשוטים, למה אתה אומר ש"אין שום טעם" להתייחס אליהם באופן מכניסטי? |
|
||||
|
||||
בוא נעשה סדר. א. הטענות שלי באופן כללי הוא נגד רציונאליזם. המכאניזם והמטריאליזם הם צאצאים שלו, וכך הם נכנסו לדיון. א1. הדיון הראשון עסק במקום שצריכה, לדעתי, לתפוס האמונה בהסתכלות על העולם. נשמעו הרבה טיעונים רציונאליסטיים נגד האמונה והדת ונראה היה לי מעניין להראות שמודל רציונאליסטי של העולם לא יכול להיות שלם ושתמיד יש שימוש באמונה. א2. הדיון השני עסק באדם כמכונת-טיורינג. נראה היה לי שמשפט-גדל מהווה ראיה נגדית. שכנעתי אח"ך שלא כן הוא אבל אני מתחיל להשתכנע בחזרה. אבל הטיעון הוא אחר מזה של לוקאס. משפט גדל כאן לא חל על המערכת שמקבילה למ"ט, אלא על המערכת שמתארת את המ"ט. (ראיתי שפרסמת את המאמר, אז אני לא ארחיב עד שלא אקרא). ב. יכול להיות שאני לא מבין למה אתה מתכוון ב"מכאניזם". אבל אם אתה מדבר על חישוב תנע של כדור מתגלגל, ולא על הבנות לגבי אלוהים ואהבה, אז הוא נראה לי דבר די חלש, המכאניזם הזה. ג. אין אהבות שמחות? נו, תפסיק. |
|
||||
|
||||
(טוב, במקום זה, חזור על הטיעון - אם טוב הוא בעיניך עדיין - בדיון על גדל, ונמשיך שם, כפי שהצעת). |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |