|
||||
|
||||
את "סטטוס" אפשר ל פרש כ"עד כמה ההשערה נחשבת סבירה", או כ"עד כמה ההשערה נחשבת מרכזית וראויה למחקר". אלו דברים שונים המושפעים מגורמים אחרים. מה שמשפיע בעיקר על הסטטוס מהסוג השני הוא יכולתה של ההשערה להכריע שאלות פתוחות או קשות אחרות, וגם היותה הכללה גורפת, מושג מאחד בתחום מסויים. במצבים מסויימים, שני המאפיינים מצטרפים יחדיו ויש השערה שהיא כל-כך חשובה וכל-כך סבירה שפשוט מניחים אותה ומתקדמים הלאה (כשמקפידים תמיד לציין "בהנחת משפט המיון..." או "בהנחת השערת רימאן..."). עד כמה השערה היא *סבירה* מושפע מ: * קיומם של מקרים פרטיים ידועים ("שתיים בריבוע ועוד אחד הוא ראשוני, שתיים ברביעית ועוד אחד הוא ראשוני, שתיים בשמינית ועוד אחד הוא ראשוני, שתיים בחזקת שש-עשרה ועוד אחד ראשוני..."). * אנלוגיה למצבים אחרים במתמטיקה (אין לי דוגמה פשוטה בשלוף, אני אחשוב על זה). * הוכחות חלקיות (לפני שהוכיחו שכל מפה מדינית אפשר לצבוע ב-4 צבעים, הוכיחו שאפשר ב-5 צבעים. זו לא הוכחה מלאה לבעייה המקורית, כמובן, אבל זו התקדמות רצינית לעומת האפשרות שתהיינה מפות הדורשות 1000 צבעים או אפילו שמספר הצבעים הדרוש איננו חסום). * הוכחות "היוריסטיות" (תגובה 149399). * נכון - גם יוקרתו של המשער משפיעה (גם על החשיבות וגם על הסיכוי שנותנים להיות ההשערה נכונה). בשנות השמונים הוכיח Gerd Faltings השערה קשה ביותר של Mordell. זהו משפט חשוב מאוד, והוא מדהים במיוחד שכן Mordell טען תמיד שאין לו שום נימוק מדוע הוא סבור שההשערה נכונה. אפילו מקרה פרטי *אחד* לא היה ידוע לפני ש-Faltings הוכיח את המשפט באופן גורף. לדעתי אין אף אדם נורמלי הסבור שפאי איננו נורמלי. עם זאת, הדיעה הרווחת היא שיהיה מאוד קשה להוכיח זאת. כשלעצמה, אין זו תוצאה חשובה במיוחד, אבל הכלים בעזרתם יוכיחו אותה יהיו כמעט בוודאות חשובים ומעניינים. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |